notes/OJ notes/pages/Leetcode Pascal's-Triangle.md
2022-07-10 10:26:30 +08:00

97 lines
2.1 KiB
Markdown

# Leetcode Pascal's-Triangle
#### 2022-06-12
---
##### Data structures:
#DS #array
##### Algorithms:
#algorithm #recursion #iteration
##### Difficulty:
#leetcode #coding_problem #difficulty-easy
##### Related topics:
```expander
tag:#recursion OR tag:#iteration OR tag:#array -tag:#Kadane_s_algorithm
```
- [[Binary Search Algorithm]]
- [[cpp_Range_based_for_loop]]
- [[Leetcode Binary-Search]]
- [[Leetcode First-Bad-Version]]
- [[Leetcode First-Unique-Character-In-a-String]]
- [[Leetcode Insert-Into-a-Binary-Search-Tree]]
- [[Leetcode Invert-Binary-Tree]]
- [[Leetcode Path-Sum]]
- [[Leetcode Ransom-Note]]
- [[Leetcode Reshape-The-Matrix]]
- [[Leetcode Reverse-Linked-List]]
- [[Leetcode Rotate-Array]]
- [[Leetcode Search-Insert-Position]]
- [[Leetcode Squares-of-a-Sorted-Array]]
- [[Leetcode Symmetric-Tree]]
- [[Leetcode Two-Sum]]
- [[Leetcode Valid-Anagram]]
- [[Two pointers approach]]
##### Links:
- [Link to problem](https://leetcode.com/problems/pascals-triangle/)
- [Additional resources]()
___
### Problem
Given an integer `numRows`, return the first numRows of **Pascal's triangle**.
In **Pascal's triangle**, each number is the sum of the two numbers directly above it as shown:
![Pascal Triangle](https://upload.wikimedia.org/wikipedia/commons/0/0d/PascalTriangleAnimated2.gif)
#### Examples
**Example 1:**
```markdown
Input: numRows = 5
Output: [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1]]
```
**Example 2:**
```markdown
Input: numRows = 1
Output: [[1]]
```
#### Constraints
- 1 <= numRows <= 30
### Thoughts
Very simple and straightforward problem.
> [!summary]
> answer[i][j] = answer[i - 1][j - 1] + answer[i - 1][j]
I worked around special cases using the for loop in j: j = 1 and j < i.
### Solution
```cpp
class Solution {
public:
vector<vector<int>> generate(int numRows) {
vector<vector<int>> answer(numRows);
for (int i = 0; i < numRows; i++) {
// initialize sub-array
answer[i] = vector<int>(i + 1);
answer[i][0] = 1;
for (int j = 1; j < i; j++) {
answer[i][j] = answer[i - 1][j] + answer[i - 1][j - 1];
}
answer[i][i] = 1;
}
return answer;
}
};
```