4.8 KiB
Leetcode Merge-Sorted-Array
2022-06-10
Data structures:
#DS #set #multiset #vector
Algorithms:
#algorithm #merge_sort #two_pointers
Difficulty:
#leetcode #coding_problem #difficulty-easy
Related topics:
tag:#set OR tag:#multiset OR tag:#merge_sort OR tag:#vector OR tag:#two_pointers
- Binary Search Algorithm
- cpp_Range_based_for_loop
- cpp_std_multiset
- Leetcode Intersection-of-Two-Arrays-II
- Leetcode Merge-Two-Sorted-Lists
- Leetcode Reshape-The-Matrix
- Leetcode Search-a-2D-Matrix
- Leetcode Squares-of-a-Sorted-Array
- Leetcode Valid-Sudoku
- Two pointers approach
Links:
Problem
You are given two integer arrays nums1
and nums2
, sorted in non-decreasing order, and two integers m
and n
, representing the number of elements in nums1
and nums2
respectively.
Merge nums1
and nums2
into a single array sorted in non-decreasing order.
The final sorted array should not be returned by the function, but instead be stored inside the array nums1
. To accommodate this, nums1
has a length of m + n
, where the first m
elements denote the elements that should be merged, and the last n
elements are set to 0
and should be ignored. nums2
has a length of n
.
Examples
Example 1:
Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
Output: [1,2,2,3,5,6]
Explanation: The arrays we are merging are [1,2,3] and [2,5,6].
The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1.
Example 2:
Input: nums1 = [1], m = 1, nums2 = [], n = 0
Output: [1]
Explanation: The arrays we are merging are [1] and [].
The result of the merge is [1].
Example 3:
Input: nums1 = [0], m = 0, nums2 = [1], n = 1
Output: [1]
Explanation: The arrays we are merging are [] and [1].
The result of the merge is [1].
Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1.
Constraints
- nums1.length == m + n
- nums2.length == n
- 0 <= m, n <= 200
- 1 <= m + n <= 200
- -10E9 <= nums1[i], nums2[j] <= 10E9
Thoughts
I have came up with three ways. The first one is to use Merge Sort, which is fast but slow to implement. And second one is cpp's cpp_std_multiset, which is O(nlog(n)) Lastly, use the two pointer apporach, which is O(n)
The second one can be optimized, by using This approach, which writes directly on num1, since there are whitespaces and unused ones will never get overwritten.
For using cpp, the most difficult thing was actually to use the vector library.
Solution
multiset solution: O(nlogn)
#include <iterator>
#include <set>
class Solution {
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
multiset<int> mset;
for (int i = 0; i < m; i++) {
mset.insert(nums1[i]);
}
for (int i = 0; i < n; i++) {
mset.insert(nums2[i]);
}
// write answer
auto it = mset.begin();
for (int i = 0; i < m + n; i++) {
nums1[i] = *it;
it++;
}
}
};
double pointer solution: O(m+n) (In c, it will get slower, since vectors are more efficient at inserting.)
#include <iterator>
#include <vector>
class Solution {
public:
void merge(vector<int>& nums1, int m, vector<int>& nums2, int n) {
int slowPtr = 0;
// Because insert will create space for us.
for (int i = 0; i < n; i++) {
nums1.pop_back();
}
for (auto i = nums1.begin(); i < n + m + nums1.begin(); i++) {
if (slowPtr < n) {
if (*i >= nums2[slowPtr]){
nums1.insert(i, nums2[slowPtr]);
slowPtr++;
i--;
} else if (i - nums1.begin() == m + slowPtr) { // if we reached the empty space of nums1
nums1.insert(i, nums2[slowPtr]);
slowPtr++;
}
}
}
}
};
c solution( not optimized )
void insert(int *arr, int numsSize, int loc, int value) {
for (int i = numsSize - 1; i > loc; i--) {
arr[i] = arr[i - 1];
}
arr[loc] = value;
}
void merge(int *nums1, int nums1Size, int m, int *nums2, int nums2Size, int n) {
int loc = 0;
for (int i = 0; i < nums1Size; i++) {
if (loc < n) {
if (nums1[i] < nums2[loc]) {
if (i == m + loc) {
insert(nums1, nums1Size, i, nums2[loc]);
loc++;
} else {
continue;
}
} else if (nums1[i] >= nums2[loc]) {
insert(nums1, nums1Size, i, nums2[loc]);
loc++;
}
} else {
break;
}
}
}