187 lines
3.6 KiB
Markdown
187 lines
3.6 KiB
Markdown
# Leetcode Search-In-a-Binary-Tree
|
|
|
|
#### 2022-07-07 08:06
|
|
|
|
> ##### Algorithms:
|
|
>
|
|
> #algorithm #DFS #BFS
|
|
>
|
|
> ##### Data structures:
|
|
>
|
|
> #DS #binary_tree
|
|
>
|
|
> ##### Difficulty:
|
|
>
|
|
> #coding_problem #difficulty_easy
|
|
>
|
|
> ##### Additional tags:
|
|
>
|
|
> #leetcode
|
|
>
|
|
> ##### Revisions:
|
|
>
|
|
> N/A
|
|
|
|
##### Related topics:
|
|
|
|
##### Links:
|
|
|
|
- [Link to problem](https://leetcode.com/problems/search-in-a-binary-search-tree/submissions/)
|
|
|
|
---
|
|
|
|
### Problem
|
|
|
|
You are given the `root` of a binary search tree (BST) and an integer `val`.
|
|
|
|
Find the node in the BST that the node's value equals `val` and return the subtree rooted with that node. If such a node does not exist, return `null`.
|
|
|
|
#### Examples
|
|
|
|
Example 1:
|
|
|
|
Input: root = [4,2,7,1,3], val = 2
|
|
Output: [2,1,3]
|
|
|
|
Example 2:
|
|
|
|
Input: root = [4,2,7,1,3], val = 5
|
|
Output: []
|
|
|
|
#### Constraints
|
|
|
|
- The number of nodes in the tree is in the range `[1, 5000]`.
|
|
- `1 <= Node.val <= 107`
|
|
- `root` is a binary search tree.
|
|
- `1 <= val <= 107`
|
|
|
|
### Thoughts
|
|
|
|
> [!summary]
|
|
> This is a #DFS or #BFS problem. We search values in the tree.
|
|
|
|
In DFS, I use preorder, since the root value will be check first, making it quicker if data appear on shallow trees more.
|
|
|
|
In BFS, I don't have use for loop inside while loop, since we don't have to consider levels.
|
|
|
|
### Solution
|
|
|
|
DFS
|
|
|
|
```cpp
|
|
/**
|
|
* Definition for a binary tree node.
|
|
* struct TreeNode {
|
|
* int val;
|
|
* TreeNode *left;
|
|
* TreeNode *right;
|
|
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
|
|
* right(right) {}
|
|
* };
|
|
*/
|
|
class Solution {
|
|
public:
|
|
TreeNode *searchBST(TreeNode *root, int val) {
|
|
// DFS preorder
|
|
// Base cases
|
|
if (!root) {
|
|
return nullptr;
|
|
}
|
|
if (root->val == val) {
|
|
return root;
|
|
}
|
|
|
|
auto left = searchBST(root->left, val);
|
|
if (left) {
|
|
return left;
|
|
}
|
|
auto right = searchBST(root->right, val);
|
|
if (right) {
|
|
return right;
|
|
}
|
|
|
|
// left and right not found
|
|
return nullptr;
|
|
}
|
|
};
|
|
```
|
|
|
|
Which can be simplified to
|
|
|
|
```cpp
|
|
/**
|
|
* Definition for a binary tree node.
|
|
* struct TreeNode {
|
|
* int val;
|
|
* TreeNode *left;
|
|
* TreeNode *right;
|
|
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
|
|
* };
|
|
*/
|
|
class Solution {
|
|
public:
|
|
TreeNode* searchBST(TreeNode* root, int val) {
|
|
// DFS preorder
|
|
// Base cases
|
|
if (!root) {
|
|
return nullptr;
|
|
}
|
|
if (root->val == val) {
|
|
return root;
|
|
}
|
|
|
|
auto left = searchBST(root->left, val);
|
|
if (left) {
|
|
return left;
|
|
}
|
|
return searchBST(root->right, val);
|
|
}
|
|
};
|
|
```
|
|
|
|
BFS
|
|
|
|
```cpp
|
|
/**
|
|
* Definition for a binary tree node.
|
|
* struct TreeNode {
|
|
* int val;
|
|
* TreeNode *left;
|
|
* TreeNode *right;
|
|
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
|
|
* right(right) {}
|
|
* };
|
|
*/
|
|
class Solution {
|
|
public:
|
|
TreeNode *searchBST(TreeNode *root, int val) {
|
|
// BFS
|
|
queue<TreeNode *> pending;
|
|
pending.push(root);
|
|
|
|
TreeNode *ptr;
|
|
while (!pending.empty()) {
|
|
ptr = pending.front();
|
|
pending.pop();
|
|
|
|
if (ptr->val == val) {
|
|
return ptr;
|
|
}
|
|
|
|
if (ptr->left)
|
|
pending.push(ptr->left);
|
|
if (ptr->right)
|
|
pending.push(ptr->right);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
};
|
|
```
|