notes/OJ notes/pages/Leetcode Search-A-2D-Matrix-II.md
2022-09-03 16:02:59 +08:00

102 lines
2.1 KiB
Markdown

# Leetcode Search-A-2D-Matrix-II
2022-09-03 14:57
> ##### Algorithms:
>
> #algorithm #divide_and_conquer
>
> ##### Data structures:
>
> #DS #array
>
> ##### Difficulty:
>
> #coding_problem #difficulty-medium
>
> ##### Additional tags:
>
> #leetcode #CS_list_need_practicing
>
> ##### Revisions:
>
> N/A
##### Links:
- [Link to problem](https://leetcode.com/problems/search-a-2d-matrix-ii/)
---
### Problem
Write an efficient algorithm that searches for a value `target` in an `m x n` integer matrix `matrix`. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
#### Examples
**Example 1:**
![](https://assets.leetcode.com/uploads/2020/11/24/searchgrid2.jpg)
```
**Input:** matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
**Output:** true
```
**Example 2:**
![](https://assets.leetcode.com/uploads/2020/11/24/searchgrid.jpg)
```
**Input:** matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
**Output:** false
```
#### Constraints
- `m == matrix.length`
- `n == matrix[i].length`
- `1 <= n, m <= 300`
- `-109 <= matrix[i][j] <= 109`
- All the integers in each row are **sorted** in ascending order.
- All the integers in each column are **sorted** in ascending order.
- `-109 <= target <= 109`
### Thoughts
> [!summary]
> This is a #divide_and_conquer problem.
It's divide and conquer, because every time we do a action,
the problem is smaller.
Start from the top-right, (alternatively, bottom-left),
because walking left makes the number smaller, and down makes the number bigger.
### Solution
```cpp
class Solution {
public:
bool searchMatrix(vector<vector<int>> &matrix, int target) {
// search from top-right
int c = matrix[0].size() - 1;
int r = 0;
int m = matrix.size();
while (c >= 0 && r < m) {
if (matrix[r][c] > target) {
c--;
} else if (matrix[r][c] < target) {
r++;
} else {
return true;
}
}
return false;
}
};
```