90 lines
1.8 KiB
Markdown
90 lines
1.8 KiB
Markdown
# Leetcode Binary-Search
|
|
|
|
#### 2022-07-09 09:34
|
|
|
|
> ##### Algorithms:
|
|
> #algorithm #binary_search
|
|
> ##### Data structures:
|
|
> #DS #array
|
|
> ##### Difficulty:
|
|
> #coding_problem #difficulty-easy
|
|
> ##### Additional tags:
|
|
> #leetcode #CS_list_need_practicing
|
|
> ##### Revisions:
|
|
> N/A
|
|
|
|
##### Related topics:
|
|
##### Links:
|
|
- [Link to problem](https://leetcode.com/problems/binary-search/)
|
|
___
|
|
### Problem
|
|
|
|
Given an array of integers `nums` which is sorted in ascending order, and an integer `target`, write a function to search `target` in `nums`. If `target` exists, then return its index. Otherwise, return `-1`.
|
|
|
|
You must write an algorithm with `O(log n)` runtime complexity.
|
|
|
|
#### Examples
|
|
|
|
**Example 1:**
|
|
|
|
**Input:** nums = [-1,0,3,5,9,12], target = 9
|
|
**Output:** 4
|
|
**Explanation:** 9 exists in nums and its index is 4
|
|
|
|
**Example 2:**
|
|
|
|
**Input:** nums = [-1,0,3,5,9,12], target = 2
|
|
**Output:** -1
|
|
**Explanation:** 2 does not exist in nums so return -1
|
|
|
|
#### Constraints
|
|
|
|
- `1 <= nums.length <= 104`
|
|
- `-104 < nums[i], target < 104`
|
|
- All the integers in `nums` are **unique**.
|
|
- `nums` is sorted in ascending order.
|
|
|
|
### Thoughts
|
|
|
|
> [!summary]
|
|
> This is a #binary_search problem.
|
|
|
|
Key takeout:
|
|
```
|
|
int r = nums.size() - 1;
|
|
```
|
|
make sure r is never OOB (l == r && r = array.size())
|
|
|
|
### Solution
|
|
|
|
==#TODO: write in recursion==
|
|
|
|
iteration
|
|
```cpp
|
|
class Solution {
|
|
public:
|
|
int search(vector<int> &nums, int target) {
|
|
// Why - 1?
|
|
// Make sure mid is never OOB (l == r && r = size)
|
|
int r = nums.size() - 1;
|
|
int l = 0;
|
|
int mid;
|
|
int val;
|
|
|
|
do {
|
|
// l + ( r - l ) / 2 or (l + r) / 2 Both ok
|
|
mid = (l + r) / 2;
|
|
val = nums[mid];
|
|
if (val == target) {
|
|
return mid;
|
|
} else if (val < target) {
|
|
l = mid + 1;
|
|
} else {
|
|
r = mid - 1;
|
|
}
|
|
} while (l <= r);
|
|
|
|
return -1;
|
|
}
|
|
};
|
|
``` |