114 lines
2.3 KiB
Markdown
114 lines
2.3 KiB
Markdown
# Leetcode Triangle
|
|
|
|
#### 2022-07-20 22:59
|
|
|
|
> ##### Algorithms:
|
|
>
|
|
> #algorithm #dynamic_programming
|
|
>
|
|
> ##### Difficulty:
|
|
>
|
|
> #coding_problem #difficulty_medium
|
|
>
|
|
> ##### Additional tags:
|
|
>
|
|
> #leetcode
|
|
>
|
|
> ##### Revisions:
|
|
>
|
|
> N/A
|
|
|
|
##### Related topics:
|
|
|
|
##### Links:
|
|
|
|
- [Link to problem](https://leetcode.com/problems/triangle/)
|
|
|
|
---
|
|
|
|
### Problem
|
|
|
|
Given a `triangle` array, return _the minimum path sum from top to bottom_.
|
|
|
|
For each step, you may move to an adjacent number of the row below. More formally, if you are on index `i` on the current row, you may move to either index `i` or index `i + 1` on the next row.
|
|
|
|
#### Examples
|
|
|
|
**Example 1:**
|
|
|
|
```
|
|
**Input:** triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
|
|
**Output:** 11
|
|
**Explanation:** The triangle looks like:
|
|
2
|
|
3 4
|
|
6 5 7
|
|
4 1 8 3
|
|
The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above).
|
|
```
|
|
|
|
**Example 2:**
|
|
|
|
```
|
|
**Input:** triangle = [[-10]]
|
|
**Output:** -10
|
|
```
|
|
|
|
#### Constraints
|
|
|
|
- `1 <= triangle.length <= 200`
|
|
- `triangle[0].length == 1`
|
|
- `triangle[i].length == triangle[i - 1].length + 1`
|
|
- `-104 <= triangle[i][j] <= 104`
|
|
|
|
### Thoughts
|
|
|
|
> [!summary]
|
|
> This is a #dynamic_programming problem.
|
|
|
|
Same as in [[Leetcode House-Robber]], there are four stages to optimization:
|
|
|
|
#### Stage 1: ordinary recursion
|
|
|
|
#### Stage 2: recursion with cachinqg
|
|
|
|
### Solution
|
|
|
|
#### Stage 2:
|
|
|
|
```cpp
|
|
class Solution {
|
|
vector<vector<int>> cache;
|
|
int minimum(vector<vector<int>> &triangle, int level, int l, int r) {
|
|
if (level == 0) {
|
|
return triangle[0][0];
|
|
} else {
|
|
int minLen = INT_MAX;
|
|
for (int i = l; i <= r; i++) {
|
|
if (i < 0 || i > level) {
|
|
continue;
|
|
}
|
|
if (cache[level][i] != -1) {
|
|
minLen = min(cache[level][i], minLen);
|
|
// cout<<"Using cache: "<<minLen<<" for "<<level<<", "<<i<<'\n';
|
|
} else {
|
|
cache[level][i] =
|
|
triangle[level][i] + minimum(triangle, level - 1, i - 1, i);
|
|
minLen = min(cache[level][i], minLen);
|
|
}
|
|
}
|
|
// cout<<minLen<<", "<<level<<'\n';
|
|
return minLen;
|
|
}
|
|
}
|
|
|
|
public:
|
|
int minimumTotal(vector<vector<int>> &triangle) {
|
|
// Stage one: recursive
|
|
cache =
|
|
vector<vector<int>>(triangle.size(), vector<int>(triangle.size(), -1));
|
|
return minimum(triangle, triangle.size() - 1, 0, triangle.size() - 1);
|
|
}
|
|
};
|
|
```
|