97 lines
1.9 KiB
Markdown
97 lines
1.9 KiB
Markdown
|
# Leetcode Subsets
|
|||
|
|
|||
|
#### 2022-07-22 16:16
|
|||
|
|
|||
|
> ##### Algorithms:
|
|||
|
> #algorithm #backtrack
|
|||
|
> ##### Data structures:
|
|||
|
> #DS #vector
|
|||
|
> ##### Difficulty:
|
|||
|
> #coding_problem #difficulty-medium
|
|||
|
> ##### Additional tags:
|
|||
|
> #leetcode
|
|||
|
> ##### Revisions:
|
|||
|
> N/A
|
|||
|
|
|||
|
##### Related topics:
|
|||
|
##### Links:
|
|||
|
- [Link to problem](https://leetcode.com/problems/subsets/)
|
|||
|
___
|
|||
|
### Problem
|
|||
|
|
|||
|
Given an integer array `nums` of **unique** elements, return _all possible subsets (the power set)_.
|
|||
|
|
|||
|
The solution set **must not** contain duplicate subsets. Return the solution in **any order**.
|
|||
|
|
|||
|
#### Examples
|
|||
|
|
|||
|
**Example 1:**
|
|||
|
|
|||
|
```
|
|||
|
**Input:** nums = [1,2,3]
|
|||
|
**Output:** [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
|
|||
|
```
|
|||
|
|
|||
|
**Example 2:**
|
|||
|
|
|||
|
```
|
|||
|
**Input:** nums = [0]
|
|||
|
**Output:** [[],[0]]
|
|||
|
```
|
|||
|
|
|||
|
#### Constraints
|
|||
|
|
|||
|
- `1 <= nums.length <= 10`
|
|||
|
- `-10 <= nums[i] <= 10`
|
|||
|
- All the numbers of `nums` are **unique**.
|
|||
|
|
|||
|
### Thoughts
|
|||
|
|
|||
|
> [!summary]
|
|||
|
> This is a super simple #backtrack problem.
|
|||
|
|
|||
|
It asked for combinations, so this is a backtrack problem.
|
|||
|
|
|||
|
go from index 0 to last one, in each iteration, you have two choices:
|
|||
|
- Add this number
|
|||
|
- Don't add this number
|
|||
|
And we try different combinations at the same level, aka. backtracking.
|
|||
|
|
|||
|
#### Pseudo code:
|
|||
|
|
|||
|
- When loc == size, append combination to answer
|
|||
|
- Else, start trying different solutions:
|
|||
|
- Append this element to combs and backtrack
|
|||
|
- pop this from combs and backtrack
|
|||
|
|
|||
|
### Solution
|
|||
|
|
|||
|
```cpp
|
|||
|
class Solution {
|
|||
|
vector<vector<int>> ans;
|
|||
|
vector<int> combs;
|
|||
|
void backtrack(vector<int> &nums, int nextLoc) {
|
|||
|
// We don't require min amount of location
|
|||
|
|
|||
|
if (nextLoc == nums.size()) {
|
|||
|
ans.push_back(combs);
|
|||
|
} else {
|
|||
|
combs.push_back(nums[nextLoc]);
|
|||
|
backtrack(nums, nextLoc + 1);
|
|||
|
|
|||
|
combs.pop_back();
|
|||
|
backtrack(nums, nextLoc + 1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
public:
|
|||
|
vector<vector<int>> subsets(vector<int> &nums) {
|
|||
|
// Backtracking for accumulating combinations.
|
|||
|
ans = {};
|
|||
|
combs = {};
|
|||
|
backtrack(nums, 0);
|
|||
|
|
|||
|
return ans;
|
|||
|
}
|
|||
|
};
|
|||
|
```
|