# Leetcode Subsets #### 2022-07-22 16:16 > ##### Algorithms: > #algorithm #backtrack > ##### Data structures: > #DS #vector > ##### Difficulty: > #coding_problem #difficulty-medium > ##### Additional tags: > #leetcode > ##### Revisions: > N/A ##### Related topics: ##### Links: - [Link to problem](https://leetcode.com/problems/subsets/) ___ ### Problem Given an integer array `nums` of **unique** elements, return _all possible subsets (the power set)_. The solution set **must not** contain duplicate subsets. Return the solution in **any order**. #### Examples **Example 1:** ``` **Input:** nums = [1,2,3] **Output:** [[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]] ``` **Example 2:** ``` **Input:** nums = [0] **Output:** [[],[0]] ``` #### Constraints - `1 <= nums.length <= 10` - `-10 <= nums[i] <= 10` - All the numbers of `nums` are **unique**. ### Thoughts > [!summary] > This is a super simple #backtrack problem. It asked for combinations, so this is a backtrack problem. go from index 0 to last one, in each iteration, you have two choices: - Add this number - Don't add this number And we try different combinations at the same level, aka. backtracking. #### Pseudo code: - When loc == size, append combination to answer - Else, start trying different solutions: - Append this element to combs and backtrack - pop this from combs and backtrack ### Solution ```cpp class Solution { vector> ans; vector combs; void backtrack(vector &nums, int nextLoc) { // We don't require min amount of location if (nextLoc == nums.size()) { ans.push_back(combs); } else { combs.push_back(nums[nextLoc]); backtrack(nums, nextLoc + 1); combs.pop_back(); backtrack(nums, nextLoc + 1); } } public: vector> subsets(vector &nums) { // Backtracking for accumulating combinations. ans = {}; combs = {}; backtrack(nums, 0); return ans; } }; ```