196 lines
4 KiB
Markdown
196 lines
4 KiB
Markdown
# Leetcode Symmetric-Tree
|
|
|
|
#### 2022-07-05 10:15
|
|
|
|
> ##### Algorithms:
|
|
>
|
|
> #algorithm #DFS #recursion #BFS
|
|
>
|
|
> ##### Data structures:
|
|
>
|
|
> #DS #binary_tree
|
|
>
|
|
> ##### Difficulty:
|
|
>
|
|
> #coding_problems #difficulty_easy
|
|
>
|
|
> ##### Additional tags:
|
|
>
|
|
> #leetcode
|
|
>
|
|
> ##### Revisions:
|
|
>
|
|
> N/A
|
|
|
|
##### Related topics:
|
|
|
|
##### Links:
|
|
|
|
- [Link to problem](https://leetcode.com/problems/symmetric-tree/)
|
|
|
|
***
|
|
|
|
### Problem
|
|
|
|
Given the `root` of a binary tree, _check whether it is a mirror of itself_ (i.e., symmetric around its center).
|
|
|
|
#### Examples
|
|
|
|
**Example 1:**
|
|
|
|
![](https://assets.leetcode.com/uploads/2021/02/19/symtree1.jpg)
|
|
|
|
**Input:** root = [1,2,2,3,4,4,3]
|
|
**Output:** true
|
|
|
|
**Example 2:**
|
|
|
|
![](https://assets.leetcode.com/uploads/2021/02/19/symtree2.jpg)
|
|
|
|
**Input:** root = [1,2,2,null,3,null,3]
|
|
**Output:** false
|
|
|
|
#### Constraints
|
|
|
|
**Constraints:**
|
|
|
|
- The number of nodes in the tree is in the range `[1, 1000]`.
|
|
- `-100 <= Node.val <= 100`
|
|
|
|
### Thoughts
|
|
|
|
> [!summary]
|
|
> This is a #DFS #recursion problem
|
|
|
|
Method 1, DFS-like Recursion:
|
|
|
|
- Base Cases:
|
|
- left and right are nullptr: true
|
|
- else if left or right is nullptr: false, must be asymmetric
|
|
- left->val != right->val: false
|
|
- return check(left->left, right->right) && check(left->right, right->left)
|
|
|
|
Method 2, BFS-like Iteration:
|
|
In the while loop:
|
|
|
|
- Take two nodes from queue, they should be matched.
|
|
- if both are nullptr, continue.
|
|
- if one is nullptr, return false.
|
|
- if val doesn't match, return false.
|
|
- add left->left and right->right to queue (they will be matched as a pair)
|
|
- add left->right and right->left to queue (they will be matched as a pair)
|
|
|
|
### Solution
|
|
|
|
Recursion, 16ms
|
|
|
|
```cpp
|
|
/**
|
|
* Definition for a binary tree node.
|
|
* struct TreeNode {
|
|
* int val;
|
|
* TreeNode *left;
|
|
* TreeNode *right;
|
|
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
|
|
* right(right) {}
|
|
* };
|
|
*/
|
|
class Solution {
|
|
bool checkSymmetric(TreeNode *left, TreeNode *right) {
|
|
// If only one child is leaf it is not symmetric
|
|
if (!left && !right) {
|
|
return true;
|
|
} else if (!left || !right) {
|
|
return false;
|
|
}
|
|
|
|
if (left->val != right->val) {
|
|
return false;
|
|
}
|
|
|
|
// One node has two childs, traverse them in pairs.
|
|
return checkSymmetric(left->right, right->left) &&
|
|
checkSymmetric(left->left, right->right);
|
|
}
|
|
|
|
public:
|
|
bool isSymmetric(TreeNode *root) {
|
|
// DFS-like recursion
|
|
return checkSymmetric(root->left, root->right);
|
|
}
|
|
};
|
|
```
|
|
|
|
BFS, iteration, 8ms
|
|
|
|
```cpp
|
|
/**
|
|
* Definition for a binary tree node.
|
|
* struct TreeNode {
|
|
* int val;
|
|
* TreeNode *left;
|
|
* TreeNode *right;
|
|
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
|
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
|
|
* right(right) {}
|
|
* };
|
|
*/
|
|
class Solution {
|
|
bool checkLeaves(TreeNode *l, TreeNode *r) {
|
|
// Check if the leaves are symmetric.
|
|
if (!l && !r) {
|
|
return true;
|
|
} else if (!l || !r) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
bool isSymmetric(TreeNode *root) {
|
|
// BFS-like iteration, using queue.
|
|
|
|
// Ensure root has two childs
|
|
if (!checkLeaves(root->left, root->right)) {
|
|
return false;
|
|
}
|
|
|
|
queue<TreeNode *> pending;
|
|
pending.push(root->left);
|
|
pending.push(root->right);
|
|
|
|
TreeNode *l, *r;
|
|
|
|
while (!pending.empty()) {
|
|
l = pending.front();
|
|
pending.pop();
|
|
r = pending.front();
|
|
pending.pop();
|
|
|
|
if (l && r) {
|
|
// Check val of l and r
|
|
if (l->val != r->val) {
|
|
return false;
|
|
}
|
|
// Chech if the child nodes are symmetric
|
|
if (!(checkLeaves(l->left, r->right) &&
|
|
checkLeaves(l->right, r->left))) {
|
|
return false;
|
|
}
|
|
|
|
// Add more to queue
|
|
pending.push(l->left);
|
|
pending.push(r->right);
|
|
pending.push(l->right);
|
|
pending.push(r->left);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
```
|