1.2 KiB
1.2 KiB
file:: section_1.6_1686904326481_0.pdf file-path:: ../assets/section_1.6_1686904326481_0.pdf
- Independence of Two Events ls-type:: annotation hl-page:: 4 hl-color:: blue id:: 648c1e25-4336-48ba-bd20-d156a4c8df7a
- Independence of Several Events ls-type:: annotation hl-page:: 12 hl-color:: blue id:: 648c1e7c-ce3f-4aea-bff6-4d35373becbb
- mutually independent ls-type:: annotation hl-page:: 12 hl-color:: yellow id:: 648c1e9c-3bfe-4ca3-b4c8-e363af9758fa
- Events A, B and C are said to be pairwise independent if the first three equations hold. ls-type:: annotation hl-page:: 12 hl-color:: yellow id:: 648c1ea8-997d-4d93-b7ac-c7a5b9300bed
- Example ls-type:: annotation hl-page:: 19 hl-color:: green id:: 648c206e-8ce7-4a74-9ba5-4991d761909f
- The n events A1, A2, · · · , An are independent if and only if for any subset Ai1 , Ai2 , · · · , Aik , ls-type:: annotation hl-page:: 18 hl-color:: yellow id:: 648c2162-314d-4d4b-a3f6-29e39fdcc83b
- Bernoulli Trials ls-type:: annotation hl-page:: 27 hl-color:: blue id:: 648c27ed-e09d-4f1a-8100-7ae2dfff1c8e
- Theorem ls-type:: annotation hl-page:: 27 hl-color:: yellow id:: 648c27f9-f944-4bf8-9e44-cb3e9048d286