logseq_notes/pages/OJ notes/pages/Leetcode Max-Area-of-Island.md
2023-06-14 14:27:22 +08:00

5.4 KiB

Leetcode Max-Area-of-Island

2022-07-15 10:00

Algorithms:

#algorithm

Data structures:

#DS #vector_2d

Difficulty:

#coding_problems #difficulty_medium

Additional tags:

#leetcode

Revisions:

N/A

Problem

You are given an m x n binary matrix grid. An island is a group of 1's (representing land) connected 4-directionally (horizontal or vertical.) You may assume all four edges of the grid are surrounded by water.

The area of an island is the number of cells with a value 1 in the island.

Return the maximum area of an island in grid. If there is no island, return 0.

Examples

Example 1:

**Input:** grid = [[0,0,1,0,0,0,0,1,0,0,0,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,1,1,0,1,0,0,0,0,0,0,0,0],[0,1,0,0,1,1,0,0,1,0,1,0,0],[0,1,0,0,1,1,0,0,1,1,1,0,0],[0,0,0,0,0,0,0,0,0,0,1,0,0],[0,0,0,0,0,0,0,1,1,1,0,0,0],[0,0,0,0,0,0,0,1,1,0,0,0,0]]
**Output:** 6
**Explanation:** The answer is not 11, because the island must be connected 4-directionally.

Example 2:

**Input:** grid = [[0,0,0,0,0,0,0,0]]
**Output:** 0

Constraints

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • grid[i][j] is either 0 or 1.

Thoughts

[!summary] This is a search problem, can be implemented using #DFS or #BFS

Simple O(mn) solution.

We keep track of pile we visited, using:

  • an 2-d bool vector visited(which is the one I'm using)

  • change the value of pile to 0

    and check for:

  • x, y is not OOB

  • x, y is in a island -> (value == 1)

  • x, y is not visited (see above)

    And for each unvisited pile, run DFS or BFS to check the size, and keep track of max size with a variable

Solution

BFS

class Solution {
int getSize(vector<vector<int>> &grid, int m, int n, int x, int y,
            vector<vector<bool>> &visited) {
  queue<pair<int, int>> todo;
  todo.push({x, y});
  int r, c;
  int size = 0;

  while (!todo.empty()) {
    r = todo.front().first;
    c = todo.front().second;
    todo.pop();

    if (visited[r][c] || grid[r][c] != 1) {
      // Visited this place, or the color is not 1
      continue;
    }

    size++;
    visited[r][c] = true;

    if (r > 0) {
      todo.push({r - 1, c});
    }
    if (r < m - 1) {
      todo.push({r + 1, c});
    }
    if (c > 0) {
      todo.push({r, c - 1});
    }
    if (c < n - 1) {
      todo.push({r, c + 1});
    }
  }

  return size;
}

public:
int maxAreaOfIsland(vector<vector<int>> &grid) {
  int m = grid.size(), n = grid[0].size();
  int maxSize = 0;

  vector<vector<bool>> visited;
  for (int i = 0; i < m; i++) {
    visited.push_back({});
    for (int j = 0; j < n; j++) {
      visited.back().push_back(false);
    }
  }

  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++) {
      if (grid[i][j] == 1 && !visited[i][j]) {
        maxSize = max(maxSize, getSize(grid, m, n, i, j, visited));
      }
    }
  }
  return maxSize;
}
};

DFS iterative (simply change from queue to stack in BFS)

class Solution {
// DFS iterative
int getSize(vector<vector<int>> &grid, int m, int n, int x, int y,
            vector<vector<bool>> &visited) {
  stack<pair<int, int>> todo;
  todo.push({x, y});
  int r, c;
  int size = 0;

  while (!todo.empty()) {
    r = todo.top().first;
    c = todo.top().second;
    todo.pop();

    if (visited[r][c] || grid[r][c] != 1) {
      // Visited this place, or the color is not 1
      continue;
    }

    size++;
    visited[r][c] = true;

    if (r > 0) {
      todo.push({r - 1, c});
    }
    if (r < m - 1) {
      todo.push({r + 1, c});
    }
    if (c > 0) {
      todo.push({r, c - 1});
    }
    if (c < n - 1) {
      todo.push({r, c + 1});
    }
  }

  return size;
}

public:
int maxAreaOfIsland(vector<vector<int>> &grid) {
  int m = grid.size(), n = grid[0].size();
  int maxSize = 0;

  vector<vector<bool>> visited;
  for (int i = 0; i < m; i++) {
    visited.push_back({});
    for (int j = 0; j < n; j++) {
      visited.back().push_back(false);
    }
  }

  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++) {
      if (grid[i][j] == 1 && !visited[i][j]) {
        maxSize = max(maxSize, getSize(grid, m, n, i, j, visited));
      }
    }
  }
  return maxSize;
}
};

DFS recursive

class Solution {
// DFS recursive
int getSize(vector<vector<int>> &grid, int m, int n, int x, int y,
            vector<vector<bool>> &visited) {
  if (x >= 0 && x < m && y >= 0 && y < n && !visited[x][y] &&
      grid[x][y] == 1) {
    visited[x][y] = true;
    return 1 + getSize(grid, m, n, x + 1, y, visited) +
           getSize(grid, m, n, x - 1, y, visited) +
           getSize(grid, m, n, x, y + 1, visited) +
           getSize(grid, m, n, x, y - 1, visited);
  } else {
    return 0;
  }
}

public:
int maxAreaOfIsland(vector<vector<int>> &grid) {
  int m = grid.size(), n = grid[0].size();
  int maxSize = 0;

  vector<vector<bool>> visited;
  for (int i = 0; i < m; i++) {
    visited.push_back({});
    for (int j = 0; j < n; j++) {
      visited.back().push_back(false);
    }
  }

  for (int i = 0; i < m; i++) {
    for (int j = 0; j < n; j++) {
      if (grid[i][j] == 1 && !visited[i][j]) {
        maxSize = max(maxSize, getSize(grid, m, n, i, j, visited));
      }
    }
  }
  return maxSize;
}
};