# Leetcode Merge-Sorted-Array #### 2022-06-10 --- ##### Data structures: #DS #set #multiset #vector ##### Algorithms: #algorithm #merge_sort #two_pointers ##### Difficulty: #leetcode #coding_problem #difficulty-easy ##### Related topics: ##### Links: - [Link to problem](https://leetcode.com/problems/merge-sorted-array/) - [multiset cpp reference](https://leetcode.com/problems/merge-sorted-array/) ___ ### Problem You are given two integer arrays `nums1` and `nums2`, sorted in **non-decreasing order**, and two integers `m` and `n`, representing the number of elements in `nums1` and `nums2` respectively. **Merge** `nums1` and `nums2` into a single array sorted in **non-decreasing order**. The final sorted array should not be returned by the function, but instead be _stored inside the array_ `nums1`. To accommodate this, `nums1` has a length of `m + n`, where the first `m` elements denote the elements that should be merged, and the last `n` elements are set to `0` and should be ignored. `nums2` has a length of `n`. #### Examples Example 1: ``` Input: nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3 Output: [1,2,2,3,5,6] Explanation: The arrays we are merging are [1,2,3] and [2,5,6]. The result of the merge is [1,2,2,3,5,6] with the underlined elements coming from nums1. ``` Example 2: ``` Input: nums1 = [1], m = 1, nums2 = [], n = 0 Output: [1] Explanation: The arrays we are merging are [1] and []. The result of the merge is [1]. ``` Example 3: ``` Input: nums1 = [0], m = 0, nums2 = [1], n = 1 Output: [1] Explanation: The arrays we are merging are [] and [1]. The result of the merge is [1]. Note that because m = 0, there are no elements in nums1. The 0 is only there to ensure the merge result can fit in nums1. ``` #### Constraints - nums1.length == m + n - nums2.length == n - 0 <= m, n <= 200 - 1 <= m + n <= 200 - -10E9 <= nums1[i], nums2[j] <= 10E9 ### Thoughts I have came up with three ways. The first one is to use **Merge Sort**, which is fast but slow to implement. And second one is cpp's **[[cpp_std_multiset]]**, which is O(nlog(n)) Lastly, use the two pointer apporach, which is O(n) The second one can be **optimized**, by using [This approach](https://leetcode.com/problems/merge-sorted-array/discuss/2120436/0ms-Solution-in-C++-using-two-pointers), which writes directly on num1, since there are whitespaces and unused ones will never get overwritten. For using cpp, the most difficult thing was actually to use the vector library. ### Solution multiset solution: O(nlogn) ```cpp #include #include class Solution { public: void merge(vector& nums1, int m, vector& nums2, int n) { multiset mset; for (int i = 0; i < m; i++) { mset.insert(nums1[i]); } for (int i = 0; i < n; i++) { mset.insert(nums2[i]); } // write answer auto it = mset.begin(); for (int i = 0; i < m + n; i++) { nums1[i] = *it; it++; } } }; ``` double pointer solution: O(m+n) (In c, it will get slower, since vectors are more efficient at inserting.) ```cpp #include #include class Solution { public: void merge(vector& nums1, int m, vector& nums2, int n) { int slowPtr = 0; // Because insert will create space for us. for (int i = 0; i < n; i++) { nums1.pop_back(); } for (auto i = nums1.begin(); i < n + m + nums1.begin(); i++) { if (slowPtr < n) { if (*i >= nums2[slowPtr]){ nums1.insert(i, nums2[slowPtr]); slowPtr++; i--; } else if (i - nums1.begin() == m + slowPtr) { // if we reached the empty space of nums1 nums1.insert(i, nums2[slowPtr]); slowPtr++; } } } } }; ``` c solution( not optimized ) ```c void insert(int *arr, int numsSize, int loc, int value) { for (int i = numsSize - 1; i > loc; i--) { arr[i] = arr[i - 1]; } arr[loc] = value; } void merge(int *nums1, int nums1Size, int m, int *nums2, int nums2Size, int n) { int loc = 0; for (int i = 0; i < nums1Size; i++) { if (loc < n) { if (nums1[i] < nums2[loc]) { if (i == m + loc) { insert(nums1, nums1Size, i, nums2[loc]); loc++; } else { continue; } } else if (nums1[i] >= nums2[loc]) { insert(nums1, nums1Size, i, nums2[loc]); loc++; } } else { break; } } } ```