# Leetcode 01-Matrix #### 2022-07-17 03:15 > ##### Algorithms: > #algorithm #BFS > ##### Data structures: > #DS #vector_2d > ##### Difficulty: > #coding_problem #difficulty-medium > ##### Additional tags: > #leetcode #CS_list_need_understanding > ##### Revisions: > N/A ##### Related topics: ##### Links: - [Link to problem](https://leetcode.com/problems/01-matrix/) ___ ### Problem Given an `m x n` binary matrix `mat`, return _the distance of the nearest_ `0` _for each cell_. The distance between two adjacent cells is `1`. #### Examples **Example 1:** ![](https://assets.leetcode.com/uploads/2021/04/24/01-1-grid.jpg) ``` **Input:** mat = [[0,0,0],[0,1,0],[0,0,0]] **Output:** [[0,0,0],[0,1,0],[0,0,0]] ``` **Example 2:** ![](https://assets.leetcode.com/uploads/2021/04/24/01-2-grid.jpg) ``` **Input:** mat = [[0,0,0],[0,1,0],[1,1,1]] **Output:** [[0,0,0],[0,1,0],[1,2,1]] ``` #### Constraints - `m == mat.length` - `n == mat[i].length` - `1 <= m, n <= 104` - `1 <= m * n <= 104` - `mat[i][j]` is either `0` or `1`. - There is at least one `0` in `mat`. ### Thoughts > [!summary] > This is a #BFS problem, because it needs to find > a smallest distance #### Why not DFS I tried with DFS, but 1. it is not suitable for finding smallest distance 2. and is easy to go into a infinite loop. 3. Also, it is hard to determine whether to revisit (update) the distance. #### BFS Start searching from 0s, because the search direction matters. pseudo code: - Initialization stage: - add every 0 to queue - make every 1 a infinite large number, (10001 this case) - while queue is not empty - check for neighbors - if OOB (Out of Bound), skip - if the value of neighbor's distance is higher than the node, update it, and add it to queue(also update his neighbors) ### Solution ```cpp class Solution { const int MAX = 10002; public: vector> updateMatrix(vector> &mat) { // Shouldn't use DFS, since DFS is likely to run into a loop queue> todo; int m = mat.size(), n = mat[0].size(); for (int i = 0; i < m; i++) { for (int j = 0; j < n; j++) { if (mat[i][j] == 0) { todo.push({i, j}); } else { mat[i][j] = MAX; } } } int offset[] = {-1, 1}; int x, y; int newX, newY; int dist; while (!todo.empty()) { x = todo.front().first; y = todo.front().second; todo.pop(); dist = mat[x][y]; for (int i : offset) { newX = x + i; if (newX < m && newX >= 0) { if (mat[newX][y] > dist + 1) { mat[newX][y] = dist + 1; todo.push({newX, y}); } } newY = y + i; if (newY < n && newY >= 0) { if (mat[x][newY] > dist + 1) { mat[x][newY] = dist + 1; todo.push({x, newY}); } } } } return mat; } }; ```