# Leetcode Lowest-Common-Ancestor-Of-a-Binary-Search-Tree #### 2022-07-08 11:53 > ##### Algorithms: > > #algorithm #binary_search #DFS > > ##### Data structures: > > #DS #binary_tree #binary_search_tree > > ##### Difficulty: > > #coding_problem #difficulty-easy > > ##### Additional tags: > > #leetcode > > ##### Revisions: > > N/A ##### Related topics: ##### Links: - [Link to problem](https://leetcode.com/problems/lowest-common-ancestor-of-a-binary-search-tree/) --- ### Problem Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BST. According to the [definition of LCA on Wikipedia](https://en.wikipedia.org/wiki/Lowest_common_ancestor): “The lowest common ancestor is defined between two nodes `p` and `q` as the lowest node in `T` that has both `p` and `q` as descendants (where we allow **a node to be a descendant of itself**).” #### Examples **Example 1:** ![](https://assets.leetcode.com/uploads/2018/12/14/binarysearchtree_improved.png) **Input:** root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8 **Output:** 6 **Explanation:** The LCA of nodes 2 and 8 is 6. **Example 2:** ![](https://assets.leetcode.com/uploads/2018/12/14/binarysearchtree_improved.png) **Input:** root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4 **Output:** 2 **Explanation:** The LCA of nodes 2 and 4 is 2, since a node can be a descendant of itself according to the LCA definition. **Example 3:** **Input:** root = [2,1], p = 2, q = 1 **Output:** 2 #### Constraints - The number of nodes in the tree is in the range `[2, 105]`. - `-109 <= Node.val <= 109` - All `Node.val` are **unique**. - `p != q` - `p` and `q` will exist in the BST. ### Thoughts > [!summary] > This is a #binary_search Because of the features of BST, the maximum val of a left sub-tree is smaller than node, so the valid LCA must meet this: ``` root->val >= small && root->val <= big ``` otherwise, search the left or right subtree. ### Solution ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { // DFS-like recursion // Base cases int big = max(q->val, p->val); int small = min(q->val, p->val); if (root->val >= small && root->val <= big) { return root; } else if (root->val > big) { return lowestCommonAncestor(root->left, p, q); } else { return lowestCommonAncestor(root->right, p, q); } } }; ```