# Leetcode Binary-Tree-Preorder-Traversal #### 2022-07-04 14:51 > ##### Algorithms: > #algorithm #DFS #DFS_preorder #Morris_traversal > ##### Data structures: > #DS #binary_tree > ##### Difficulty: > #coding_problem #difficulty-easy > ##### Additional tags: > #leetcode #CS_list_need_understanding > ##### Revisions: > N/A ##### Related topics: ```expander tag:#DFS ``` - [[Leetcode Binary-Tree-Inorder-Traversal]] - [[Leetcode Binary-Tree-Postorder-Traversal]] - [[Leetcode Insert-Into-a-Binary-Search-Tree]] - [[Leetcode Invert-Binary-Tree]] - [[Leetcode Maximum-Depth-Of-Binary-Tree]] - [[Leetcode Path-Sum]] - [[Leetcode Search-In-a-Binary-Tree]] - [[Leetcode Symmetric-Tree]] - [[Leetcode Validate-Binary-Search-Tree]] ##### Links: - [Link to problem](https://leetcode.com/problems/binary-tree-preorder-traversal/) ___ ### Problem Given the `root` of a binary tree, return _the preorder traversal of its nodes' values_. #### Examples **Example 1:** ![](https://assets.leetcode.com/uploads/2020/09/15/inorder_1.jpg) **Input:** root = [1,null,2,3] **Output:** [1,2,3] **Example 2:** **Input:** root = [] **Output:** [] **Example 3:** **Input:** root = [1] **Output:** [1] #### Constraints - The number of nodes in the tree is in the range `[0, 100]`. - `-100 <= Node.val <= 100` ### Thoughts > [!summary] > This is a #binary_tree #DFS_preorder problem. Preorder, means root is at the "Pre" position, so the order is: - Search root node - Search left sub-tree - Search right sub-tree The recursion version is easy to implement. Use Stacks for the iteration method, because stacks are FILO, the **subtree will get traversed first.** And remember to push **right subtree** first, so that the left one will be traversed first. The Morris traversal needs more understandings. ### Solution Iteration ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), * right(right) {} * }; */ class Solution { public: vector preorderTraversal(TreeNode *root) { if (!root) { return {}; } // Using stacks, since FILO, the latest gets served first. vector answer; stack pending; do { if (root != nullptr) { answer.push_back(root->val); // nothing gets pushed if is nullptr; pending.push(root->right); pending.push(root->left); } root = pending.top(); pending.pop(); } while (root || !pending.empty()); return answer; } }; ``` Recursion, using private funcs: ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), * right(right) {} * }; */ class Solution { public: vector preorderTraversal(TreeNode *root) { // Use two functions: vector answer; preorder(root, answer); return answer; } private: void preorder(TreeNode *root, vector &answer) { if (root == nullptr) { return; } answer.push_back(root->val); preorder(root->left, answer); preorder(root->right, answer); } }; ``` Recursion: ```cpp /** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), * right(right) {} * }; */ class Solution { public: vector preorderTraversal(TreeNode *root) { // If the node is empty if (root == nullptr) { return {}; } // First check root vector answer; answer.push_back(root->val); vector left = preorderTraversal(root->left); answer.insert(answer.end(), left.begin(), left.end()); vector right = preorderTraversal(root->right); answer.insert(answer.end(), right.begin(), right.end()); return answer; } }; ```