# Leetcode Binary-Search #### 2022-07-09 09:34 > ##### Algorithms: > #algorithm #binary_search > ##### Data structures: > #DS #array > ##### Difficulty: > #coding_problem #difficulty-easy > ##### Additional tags: > #leetcode #CS_list_need_practicing > ##### Revisions: > N/A ##### Related topics: ```expander tag:#binary_search ``` - [[Binary Search Algorithm]] - [[Leetcode First-Bad-Version]] - [[Leetcode Lowest-Common-Ancestor-Of-a-Binary-Search-Tree]] - [[Leetcode Search-a-2D-Matrix]] - [[Leetcode Search-Insert-Position]] - [[Leetcode Two-Sum-IV-Input-Is-a-BST]] ##### Links: - [Link to problem](https://leetcode.com/problems/binary-search/) ___ ### Problem Given an array of integers `nums` which is sorted in ascending order, and an integer `target`, write a function to search `target` in `nums`. If `target` exists, then return its index. Otherwise, return `-1`. You must write an algorithm with `O(log n)` runtime complexity. #### Examples **Example 1:** **Input:** nums = [-1,0,3,5,9,12], target = 9 **Output:** 4 **Explanation:** 9 exists in nums and its index is 4 **Example 2:** **Input:** nums = [-1,0,3,5,9,12], target = 2 **Output:** -1 **Explanation:** 2 does not exist in nums so return -1 #### Constraints - `1 <= nums.length <= 104` - `-104 < nums[i], target < 104` - All the integers in `nums` are **unique**. - `nums` is sorted in ascending order. ### Thoughts > [!summary] > This is a #binary_search problem. Key takeout: ``` int r = nums.size() - 1; ``` make sure r is never OOB (l == r && r = array.size()) ### Solution ==#TODO: write in recursion== iteration ```cpp class Solution { public: int search(vector &nums, int target) { // Why - 1? // Make sure mid is never OOB (l == r && r = size) int r = nums.size() - 1; int l = 0; int mid; int val; do { // l + ( r - l ) / 2 or (l + r) / 2 Both ok mid = (l + r) / 2; val = nums[mid]; if (val == target) { return mid; } else if (val < target) { l = mid + 1; } else { r = mid - 1; } } while (l <= r); return -1; } }; ```