# Leetcode Triangle #### 2022-07-20 22:59 > ##### Algorithms: > > #algorithm #dynamic_programming > > ##### Difficulty: > > #coding_problem #difficulty_medium > > ##### Additional tags: > > #leetcode > > ##### Revisions: > > N/A ##### Related topics: ##### Links: - [Link to problem](https://leetcode.com/problems/triangle/) --- ### Problem Given a `triangle` array, return _the minimum path sum from top to bottom_. For each step, you may move to an adjacent number of the row below. More formally, if you are on index `i` on the current row, you may move to either index `i` or index `i + 1` on the next row. #### Examples **Example 1:** ``` **Input:** triangle = [[2],[3,4],[6,5,7],[4,1,8,3]] **Output:** 11 **Explanation:** The triangle looks like: 2 3 4 6 5 7 4 1 8 3 The minimum path sum from top to bottom is 2 + 3 + 5 + 1 = 11 (underlined above). ``` **Example 2:** ``` **Input:** triangle = [[-10]] **Output:** -10 ``` #### Constraints - `1 <= triangle.length <= 200` - `triangle[0].length == 1` - `triangle[i].length == triangle[i - 1].length + 1` - `-104 <= triangle[i][j] <= 104` ### Thoughts > [!summary] > This is a #dynamic_programming problem. Same as in [[Leetcode House-Robber]], there are four stages to optimization: #### Stage 1: ordinary recursion #### Stage 2: recursion with cachinqg ### Solution #### Stage 2: ```cpp class Solution { vector> cache; int minimum(vector> &triangle, int level, int l, int r) { if (level == 0) { return triangle[0][0]; } else { int minLen = INT_MAX; for (int i = l; i <= r; i++) { if (i < 0 || i > level) { continue; } if (cache[level][i] != -1) { minLen = min(cache[level][i], minLen); // cout<<"Using cache: "<> &triangle) { // Stage one: recursive cache = vector>(triangle.size(), vector(triangle.size(), -1)); return minimum(triangle, triangle.size() - 1, 0, triangle.size() - 1); } }; ```