vault backup: 2022-07-26 09:21:10
This commit is contained in:
parent
fdb29cf0ca
commit
6feacd79ba
102
OJ notes/pages/Leetcode Happy-Number.md
Normal file
102
OJ notes/pages/Leetcode Happy-Number.md
Normal file
|
@ -0,0 +1,102 @@
|
|||
# Leetcode Happy-Number
|
||||
|
||||
#### 2022-07-26 09:12
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #Floyd_s_cycle_finding_algorithm
|
||||
> ##### Difficulty:
|
||||
> #coding_problem #difficulty-easy
|
||||
> ##### Additional tags:
|
||||
> #leetcode
|
||||
> ##### Revisions:
|
||||
> N/A
|
||||
|
||||
##### Related topics:
|
||||
```expander
|
||||
tag:#Floyd_s_cycle_finding_algorithm
|
||||
```
|
||||
|
||||
|
||||
|
||||
##### Links:
|
||||
- [Link to problem](https://leetcode.com/problems/happy-number/)
|
||||
___
|
||||
### Problem
|
||||
|
||||
Write an algorithm to determine if a number `n` is happy.
|
||||
|
||||
A **happy number** is a number defined by the following process:
|
||||
|
||||
- Starting with any positive integer, replace the number by the sum of the squares of its digits.
|
||||
- Repeat the process until the number equals 1 (where it will stay), or it **loops endlessly in a cycle** which does not include 1.
|
||||
- Those numbers for which this process **ends in 1** are happy.
|
||||
|
||||
Return `true` _if_ `n` _is a happy number, and_ `false` _if not_.
|
||||
|
||||
#### Examples
|
||||
|
||||
**Example 1:**
|
||||
|
||||
**Input:** n = 19
|
||||
**Output:** true
|
||||
**Explanation:**
|
||||
12 + 92 = 82
|
||||
82 + 22 = 68
|
||||
62 + 82 = 100
|
||||
12 + 02 + 02 = 1
|
||||
|
||||
**Example 2:**
|
||||
|
||||
**Input:** n = 2
|
||||
**Output:** false
|
||||
|
||||
#### Constraints
|
||||
|
||||
- `1 <= n <= 231 - 1`
|
||||
|
||||
### Thoughts
|
||||
|
||||
> [!summary]
|
||||
> This is a #Floyd_s_cycle_finding_algorithm
|
||||
|
||||
This works, because as the problem mentioned, this will result in a endless loop.
|
||||
|
||||
So, by using fast ans slow, we can determine whether there is a loop.
|
||||
|
||||
And, when fast hit 1, we know slow will eventually reach the
|
||||
answer, so we return early. (but in the cost of time of checking).
|
||||
|
||||
### Solution
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
int getDigitSqrt(int i) {
|
||||
int sum = 0;
|
||||
|
||||
while (i) {
|
||||
sum += (i % 10) * (i % 10);
|
||||
i /= 10;
|
||||
}
|
||||
|
||||
return sum;
|
||||
}
|
||||
|
||||
public:
|
||||
bool isHappy(int n) {
|
||||
// Floyd cycle finding algorighm.
|
||||
int slow, fast;
|
||||
slow = fast = n;
|
||||
|
||||
do {
|
||||
slow = getDigitSqrt(slow);
|
||||
fast = getDigitSqrt(fast);
|
||||
fast = getDigitSqrt(fast);
|
||||
if (fast == 1) {
|
||||
return true;
|
||||
}
|
||||
} while (fast != slow);
|
||||
|
||||
return false;
|
||||
}
|
||||
};
|
||||
```
|
Loading…
Reference in a new issue