vault backup: 2022-07-22 15:36:57
This commit is contained in:
parent
ffcd31d6e7
commit
58cb8af3f9
34
OJ notes/pages/Bit-Manipulation count true trick.md
Normal file
34
OJ notes/pages/Bit-Manipulation count true trick.md
Normal file
|
@ -0,0 +1,34 @@
|
|||
# Bit-Manipulation count true trick
|
||||
|
||||
#### 2022-07-22 15:11
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #bit_manipulation
|
||||
> ##### Data Structure:
|
||||
> #DS #bitset
|
||||
> ##### Difficulty:
|
||||
> #CS_analysis #difficulty-easy
|
||||
> ##### Additional tags:
|
||||
>
|
||||
|
||||
##### Related problems:
|
||||
```expander
|
||||
tag:#coding_problem tag:#bit_manipulation -tag:#template_remove_me
|
||||
```
|
||||
|
||||
|
||||
___
|
||||
|
||||
### What is Bit-Manipulation count true trick?
|
||||
|
||||
(n & (n - 1))
|
||||
|
||||
### How does Bit-Manipulation count true trick work?
|
||||
|
||||
#### validate if the number is power of 2
|
||||
|
||||
See [[Leetcode Power-of-Two#Method 1 using masking]]
|
||||
|
||||
#### Counting 1
|
||||
|
||||
See [[Leetcode Number-of-1-Bits#Method 2 n n - 1 method]]
|
105
OJ notes/pages/Leetcode Number-of-1-Bits.md
Normal file
105
OJ notes/pages/Leetcode Number-of-1-Bits.md
Normal file
|
@ -0,0 +1,105 @@
|
|||
# Leetcode Number-of-1-Bits
|
||||
|
||||
#### 2022-07-22 14:45
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #bit_manipulation
|
||||
> ##### Data structures:
|
||||
> #DS #bitset
|
||||
> ##### Difficulty:
|
||||
> #coding_problem #difficulty-easy
|
||||
> ##### Additional tags:
|
||||
> #leetcode
|
||||
> ##### Revisions:
|
||||
> N/A
|
||||
|
||||
##### Related topics:
|
||||
```expander
|
||||
tag:#bit_manipulation
|
||||
```
|
||||
|
||||
|
||||
##### Links:
|
||||
- [Link to problem](https://leetcode.com/problems/number-of-1-bits/)
|
||||
___
|
||||
### Problem
|
||||
|
||||
Write a function that takes an unsigned integer and returns the number of '1' bits it has (also known as the [Hamming weight](http://en.wikipedia.org/wiki/Hamming_weight)).
|
||||
|
||||
#### Examples
|
||||
|
||||
**Example 1:**
|
||||
|
||||
**Input:** n = 00000000000000000000000000001011
|
||||
**Output:** 3
|
||||
**Explanation:** The input binary string **00000000000000000000000000001011** has a total of three '1' bits.
|
||||
|
||||
**Example 2:**
|
||||
|
||||
**Input:** n = 00000000000000000000000010000000
|
||||
**Output:** 1
|
||||
**Explanation:** The input binary string **00000000000000000000000010000000** has a total of one '1' bit.
|
||||
|
||||
**Example 3:**
|
||||
|
||||
**Input:** n = 11111111111111111111111111111101
|
||||
**Output:** 31
|
||||
**Explanation:** The input binary string **11111111111111111111111111111101** has a total of thirty one '1' bits.
|
||||
|
||||
#### Constraints
|
||||
|
||||
- The input must be a **binary string** of length `32`.
|
||||
|
||||
### Thoughts
|
||||
|
||||
> [!summary]
|
||||
> This is a #bit_manipulation problem.
|
||||
|
||||
Two methods for this problem.
|
||||
|
||||
#### Method 1: cpp's STL implementation
|
||||
|
||||
simply use [bitset::count](https://en.cppreference.com/w/cpp/utility/bitset/count)
|
||||
|
||||
#### Method 2: (n & (n - 1)) method
|
||||
|
||||
By using n = (n & (n - 1)), we can remove the last `true` in the original bitset:
|
||||
|
||||
```
|
||||
5 : 101
|
||||
4 : 100
|
||||
5 & 4 : 100
|
||||
|
||||
10 : 1010
|
||||
9 : 1001
|
||||
10 & 9 : 1000
|
||||
```
|
||||
|
||||
n - 1 changes the trailing `false`s to `true`, and change the last `true` to false, and by AND operation, we can remove the last `true` bit.
|
||||
|
||||
### Solution
|
||||
|
||||
#### CPP STL:
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
public:
|
||||
int hammingWeight(uint32_t n) { return bitset<32>(n).count(); }
|
||||
};
|
||||
````
|
||||
|
||||
#### Method 2:
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
public:
|
||||
int hammingWeight(uint32_t n) {
|
||||
int count = 0;
|
||||
while (n != 0) {
|
||||
n = (n & (n - 1));
|
||||
count++;
|
||||
}
|
||||
return count;
|
||||
}
|
||||
};
|
||||
```
|
131
OJ notes/pages/Leetcode Power-of-Two.md
Normal file
131
OJ notes/pages/Leetcode Power-of-Two.md
Normal file
|
@ -0,0 +1,131 @@
|
|||
# Leetcode Power-of-Two
|
||||
|
||||
#### 2022-07-22 14:30
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #bit_manipulation
|
||||
> ##### Data structures:
|
||||
> #DS #bitset
|
||||
> ##### Difficulty:
|
||||
> #coding_problem #difficulty-medium
|
||||
> ##### Additional tags:
|
||||
> #leetcode
|
||||
> ##### Revisions:
|
||||
> N/A
|
||||
|
||||
##### Related topics:
|
||||
```expander
|
||||
tag:#bitset OR tag:#bit_manipulation
|
||||
```
|
||||
|
||||
|
||||
|
||||
##### Links:
|
||||
- [Link to problem](https://leetcode.com/problems/power-of-two/)
|
||||
___
|
||||
### Problem
|
||||
|
||||
Given an integer `n`, return _`true` if it is a power of two. Otherwise, return `false`_.
|
||||
|
||||
An integer `n` is a power of two, if there exists an integer `x` such that `n == 2x`.
|
||||
|
||||
#### Examples
|
||||
|
||||
**Example 1:**
|
||||
|
||||
**Input:** n = 1
|
||||
**Output:** true
|
||||
**Explanation:** 20 = 1
|
||||
|
||||
**Example 2:**
|
||||
|
||||
**Input:** n = 16
|
||||
**Output:** true
|
||||
**Explanation:** 24 = 16
|
||||
|
||||
**Example 3:**
|
||||
|
||||
**Input:** n = 3
|
||||
**Output:** false
|
||||
|
||||
#### Constraints
|
||||
|
||||
- `-231 <= n <= 231 - 1`
|
||||
|
||||
### Thoughts
|
||||
|
||||
> [!summary]
|
||||
> This is a #bit_manipulation problem.
|
||||
> The solution can come from investigating multiple
|
||||
> examples and find the common rules
|
||||
|
||||
Simple solution using bit masking:
|
||||
|
||||
#### Method 1, using masking
|
||||
|
||||
- if n <= 0, return false, because it's impossible to be power of 2.
|
||||
- else, return !(n & (n - 1))
|
||||
|
||||
power of 2 and --1 looks like this
|
||||
|
||||
```
|
||||
2 : 10
|
||||
1 : 01
|
||||
|
||||
4 : 100
|
||||
3 : 011
|
||||
|
||||
8 : 1000
|
||||
7 : 0111
|
||||
```
|
||||
|
||||
so, if it is power of 2, `!(n & (n - 1))` will produce true.
|
||||
|
||||
otherwise, `(n & (n - 1))` will produce something other than 0.
|
||||
|
||||
#### Method 2, count bits
|
||||
|
||||
power of 2 must have one and only one `true` in the bitset:
|
||||
|
||||
```
|
||||
2 : 10
|
||||
4 : 100
|
||||
8 : 1000
|
||||
...
|
||||
```
|
||||
|
||||
So, by counting if the bitset has only one `true`.
|
||||
|
||||
### Solution
|
||||
|
||||
#### Method 1:
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
public:
|
||||
bool isPowerOfTwo(int n) {
|
||||
// n == 0: return 0
|
||||
// n != 0: return !(n & (n - 1))
|
||||
if (n <= 0) {
|
||||
return false;
|
||||
} else {
|
||||
return !(n & (n - 1));
|
||||
}
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
#### Method 2:
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
public:
|
||||
bool isPowerOfTwo(int n) {
|
||||
if (n <= 0) {
|
||||
return false;
|
||||
} else {
|
||||
return (bitset<32>(n).count() == 1);
|
||||
}
|
||||
}
|
||||
};
|
||||
```
|
98
OJ notes/pages/Leetcode Reverse-Bits.md
Normal file
98
OJ notes/pages/Leetcode Reverse-Bits.md
Normal file
|
@ -0,0 +1,98 @@
|
|||
# Leetcode Reverse-Bits
|
||||
|
||||
#### 2022-07-22 15:15
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #bit_manipulation
|
||||
> ##### Data structures:
|
||||
> #DS #bitset
|
||||
> ##### Difficulty:
|
||||
> #coding_problem #difficulty-easy
|
||||
> ##### Additional tags:
|
||||
> #leetcode
|
||||
> ##### Revisions:
|
||||
> N/A
|
||||
|
||||
##### Related topics:
|
||||
```expander
|
||||
tag:#bitset
|
||||
```
|
||||
|
||||
|
||||
|
||||
##### Links:
|
||||
- [Link to problem](https://leetcode.com/problems/reverse-bits/)
|
||||
- [Solution and detailed explanation](https://leetcode.com/problems/reverse-bits/discuss/1232842/JAVA-C%2B%2B-%3A-0ms-or-O(1)-Time-Complexity-or-in-place-or-Detailed-Explanation)
|
||||
- [Shifting solution an explanation](https://leetcode.com/problems/reverse-bits/discuss/54741/O(1)-bit-operation-C++-solution-(8ms)/301342)
|
||||
___
|
||||
### Problem
|
||||
|
||||
Reverse bits of a given 32 bits unsigned integer.
|
||||
|
||||
#### Examples
|
||||
|
||||
**Example 1:**
|
||||
|
||||
**Input:** n = 00000010100101000001111010011100
|
||||
**Output:** 964176192 (00111001011110000010100101000000)
|
||||
**Explanation:** The input binary string **00000010100101000001111010011100** represents the unsigned integer 43261596, so return 964176192 which its binary representation is **00111001011110000010100101000000**.
|
||||
|
||||
**Example 2:**
|
||||
|
||||
**Input:** n = 11111111111111111111111111111101
|
||||
**Output:** 3221225471 (10111111111111111111111111111111)
|
||||
**Explanation:** The input binary string **11111111111111111111111111111101** represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is **10111111111111111111111111111111**.
|
||||
|
||||
#### Constraints
|
||||
|
||||
- The input must be a **binary string** of length `32`
|
||||
|
||||
### Thoughts
|
||||
|
||||
> [!summary]
|
||||
> This is a #bit_manipulation problem.
|
||||
|
||||
There are two methods:
|
||||
- swapping bits inside the bitset
|
||||
- shifting
|
||||
|
||||
#### Method 1: Swapping
|
||||
|
||||
This is the most simple and intuitive one, all you have to do is swap the first and last numbers, and continue like that.
|
||||
|
||||
#### Method 2: Shifting
|
||||
|
||||
The bitset has operations like this `<<` `>>`, which can be used to shift, and reverse the array.
|
||||
|
||||
The operation is already documented in the link above:
|
||||
[[Leetcode Reverse-Bits#Links]]
|
||||
|
||||
### Solution
|
||||
|
||||
#### Method 1:
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
public:
|
||||
uint32_t reverseBits(uint32_t n) {
|
||||
// swap bits inside the function
|
||||
bitset<32> nb(n);
|
||||
bool tmp;
|
||||
int l = 0, r = 31;
|
||||
|
||||
while (l < r) {
|
||||
tmp = nb[l];
|
||||
nb[l] = nb[r];
|
||||
nb[r] = tmp;
|
||||
l++;
|
||||
r--;
|
||||
}
|
||||
|
||||
return nb.to_ulong();
|
||||
}
|
||||
};
|
||||
```
|
||||
|
||||
#### Shifting:
|
||||
|
||||
==#TODO solve it using shifting==
|
41
OJ notes/pages/Leetcode Single-Number.md
Normal file
41
OJ notes/pages/Leetcode Single-Number.md
Normal file
|
@ -0,0 +1,41 @@
|
|||
# Leetcode Single-Number
|
||||
|
||||
#### 2022-07-22 15:31
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #bit_manipulation
|
||||
> ##### Data structures:
|
||||
> #DS #bitset
|
||||
> ##### Difficulty:
|
||||
> #coding_problem #difficulty-easy
|
||||
> ##### Additional tags:
|
||||
> #leetcode
|
||||
> ##### Revisions:
|
||||
> N/A
|
||||
|
||||
##### Related topics:
|
||||
```expander
|
||||
tag:#bit_manipulation
|
||||
```
|
||||
|
||||
|
||||
|
||||
##### Links:
|
||||
- [Link to problem](https://leetcode.com/problems/single-number/)
|
||||
___
|
||||
### Problem
|
||||
|
||||
Given a **non-empty** array of integers `nums`, every element appears _twice_ except for one. Find that single one.
|
||||
|
||||
You must implement a solution with a linear runtime complexity and use only constant extra space.
|
||||
|
||||
#### Examples
|
||||
|
||||
#### Constraints
|
||||
|
||||
### Thoughts
|
||||
|
||||
> [!summary]
|
||||
> This is a #template_remove_me
|
||||
|
||||
### Solution
|
|
@ -67,3 +67,41 @@ Same as in [[Leetcode House-Robber]], there are four stages to optimization:
|
|||
#### Stage 2: recursion with cachinqg
|
||||
|
||||
### Solution
|
||||
|
||||
#### Stage 2:
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
vector<vector<int>> cache;
|
||||
int minimum(vector<vector<int>> &triangle, int level, int l, int r) {
|
||||
if (level == 0) {
|
||||
return triangle[0][0];
|
||||
} else {
|
||||
int minLen = INT_MAX;
|
||||
for (int i = l; i <= r; i++) {
|
||||
if (i < 0 || i > level) {
|
||||
continue;
|
||||
}
|
||||
if (cache[level][i] != -1) {
|
||||
minLen = min(cache[level][i], minLen);
|
||||
// cout<<"Using cache: "<<minLen<<" for "<<level<<", "<<i<<'\n';
|
||||
} else {
|
||||
cache[level][i] =
|
||||
triangle[level][i] + minimum(triangle, level - 1, i - 1, i);
|
||||
minLen = min(cache[level][i], minLen);
|
||||
}
|
||||
}
|
||||
// cout<<minLen<<", "<<level<<'\n';
|
||||
return minLen;
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
int minimumTotal(vector<vector<int>> &triangle) {
|
||||
// Stage one: recursive
|
||||
cache =
|
||||
vector<vector<int>>(triangle.size(), vector<int>(triangle.size(), -1));
|
||||
return minimum(triangle, triangle.size() - 1, 0, triangle.size() - 1);
|
||||
}
|
||||
};
|
||||
```
|
Loading…
Reference in a new issue