vault backup: 2022-07-22 15:36:57

This commit is contained in:
juan 2022-07-22 15:36:57 +08:00
parent ffcd31d6e7
commit 58cb8af3f9
6 changed files with 447 additions and 0 deletions

View file

@ -0,0 +1,34 @@
# Bit-Manipulation count true trick
#### 2022-07-22 15:11
> ##### Algorithms:
> #algorithm #bit_manipulation
> ##### Data Structure:
> #DS #bitset
> ##### Difficulty:
> #CS_analysis #difficulty-easy
> ##### Additional tags:
>
##### Related problems:
```expander
tag:#coding_problem tag:#bit_manipulation -tag:#template_remove_me
```
___
### What is Bit-Manipulation count true trick?
(n & (n - 1))
### How does Bit-Manipulation count true trick work?
#### validate if the number is power of 2
See [[Leetcode Power-of-Two#Method 1 using masking]]
#### Counting 1
See [[Leetcode Number-of-1-Bits#Method 2 n n - 1 method]]

View file

@ -0,0 +1,105 @@
# Leetcode Number-of-1-Bits
#### 2022-07-22 14:45
> ##### Algorithms:
> #algorithm #bit_manipulation
> ##### Data structures:
> #DS #bitset
> ##### Difficulty:
> #coding_problem #difficulty-easy
> ##### Additional tags:
> #leetcode
> ##### Revisions:
> N/A
##### Related topics:
```expander
tag:#bit_manipulation
```
##### Links:
- [Link to problem](https://leetcode.com/problems/number-of-1-bits/)
___
### Problem
Write a function that takes an unsigned integer and returns the number of '1' bits it has (also known as the [Hamming weight](http://en.wikipedia.org/wiki/Hamming_weight)).
#### Examples
**Example 1:**
**Input:** n = 00000000000000000000000000001011
**Output:** 3
**Explanation:** The input binary string **00000000000000000000000000001011** has a total of three '1' bits.
**Example 2:**
**Input:** n = 00000000000000000000000010000000
**Output:** 1
**Explanation:** The input binary string **00000000000000000000000010000000** has a total of one '1' bit.
**Example 3:**
**Input:** n = 11111111111111111111111111111101
**Output:** 31
**Explanation:** The input binary string **11111111111111111111111111111101** has a total of thirty one '1' bits.
#### Constraints
- The input must be a **binary string** of length `32`.
### Thoughts
> [!summary]
> This is a #bit_manipulation problem.
Two methods for this problem.
#### Method 1: cpp's STL implementation
simply use [bitset::count](https://en.cppreference.com/w/cpp/utility/bitset/count)
#### Method 2: (n & (n - 1)) method
By using n = (n & (n - 1)), we can remove the last `true` in the original bitset:
```
5 : 101
4 : 100
5 & 4 : 100
10 : 1010
9 : 1001
10 & 9 : 1000
```
n - 1 changes the trailing `false`s to `true`, and change the last `true` to false, and by AND operation, we can remove the last `true` bit.
### Solution
#### CPP STL:
```cpp
class Solution {
public:
int hammingWeight(uint32_t n) { return bitset<32>(n).count(); }
};
````
#### Method 2:
```cpp
class Solution {
public:
int hammingWeight(uint32_t n) {
int count = 0;
while (n != 0) {
n = (n & (n - 1));
count++;
}
return count;
}
};
```

View file

@ -0,0 +1,131 @@
# Leetcode Power-of-Two
#### 2022-07-22 14:30
> ##### Algorithms:
> #algorithm #bit_manipulation
> ##### Data structures:
> #DS #bitset
> ##### Difficulty:
> #coding_problem #difficulty-medium
> ##### Additional tags:
> #leetcode
> ##### Revisions:
> N/A
##### Related topics:
```expander
tag:#bitset OR tag:#bit_manipulation
```
##### Links:
- [Link to problem](https://leetcode.com/problems/power-of-two/)
___
### Problem
Given an integer `n`, return _`true` if it is a power of two. Otherwise, return `false`_.
An integer `n` is a power of two, if there exists an integer `x` such that `n == 2x`.
#### Examples
**Example 1:**
**Input:** n = 1
**Output:** true
**Explanation:** 20 = 1
**Example 2:**
**Input:** n = 16
**Output:** true
**Explanation:** 24 = 16
**Example 3:**
**Input:** n = 3
**Output:** false
#### Constraints
- `-231 <= n <= 231 - 1`
### Thoughts
> [!summary]
> This is a #bit_manipulation problem.
> The solution can come from investigating multiple
> examples and find the common rules
Simple solution using bit masking:
#### Method 1, using masking
- if n <= 0, return false, because it's impossible to be power of 2.
- else, return !(n & (n - 1))
power of 2 and --1 looks like this
```
2 : 10
1 : 01
4 : 100
3 : 011
8 : 1000
7 : 0111
```
so, if it is power of 2, `!(n & (n - 1))` will produce true.
otherwise, `(n & (n - 1))` will produce something other than 0.
#### Method 2, count bits
power of 2 must have one and only one `true` in the bitset:
```
2 : 10
4 : 100
8 : 1000
...
```
So, by counting if the bitset has only one `true`.
### Solution
#### Method 1:
```cpp
class Solution {
public:
bool isPowerOfTwo(int n) {
// n == 0: return 0
// n != 0: return !(n & (n - 1))
if (n <= 0) {
return false;
} else {
return !(n & (n - 1));
}
}
};
```
#### Method 2:
```cpp
class Solution {
public:
bool isPowerOfTwo(int n) {
if (n <= 0) {
return false;
} else {
return (bitset<32>(n).count() == 1);
}
}
};
```

View file

@ -0,0 +1,98 @@
# Leetcode Reverse-Bits
#### 2022-07-22 15:15
> ##### Algorithms:
> #algorithm #bit_manipulation
> ##### Data structures:
> #DS #bitset
> ##### Difficulty:
> #coding_problem #difficulty-easy
> ##### Additional tags:
> #leetcode
> ##### Revisions:
> N/A
##### Related topics:
```expander
tag:#bitset
```
##### Links:
- [Link to problem](https://leetcode.com/problems/reverse-bits/)
- [Solution and detailed explanation](https://leetcode.com/problems/reverse-bits/discuss/1232842/JAVA-C%2B%2B-%3A-0ms-or-O(1)-Time-Complexity-or-in-place-or-Detailed-Explanation)
- [Shifting solution an explanation](https://leetcode.com/problems/reverse-bits/discuss/54741/O(1)-bit-operation-C++-solution-(8ms)/301342)
___
### Problem
Reverse bits of a given 32 bits unsigned integer.
#### Examples
**Example 1:**
**Input:** n = 00000010100101000001111010011100
**Output:** 964176192 (00111001011110000010100101000000)
**Explanation:** The input binary string **00000010100101000001111010011100** represents the unsigned integer 43261596, so return 964176192 which its binary representation is **00111001011110000010100101000000**.
**Example 2:**
**Input:** n = 11111111111111111111111111111101
**Output:** 3221225471 (10111111111111111111111111111111)
**Explanation:** The input binary string **11111111111111111111111111111101** represents the unsigned integer 4294967293, so return 3221225471 which its binary representation is **10111111111111111111111111111111**.
#### Constraints
- The input must be a **binary string** of length `32`
### Thoughts
> [!summary]
> This is a #bit_manipulation problem.
There are two methods:
- swapping bits inside the bitset
- shifting
#### Method 1: Swapping
This is the most simple and intuitive one, all you have to do is swap the first and last numbers, and continue like that.
#### Method 2: Shifting
The bitset has operations like this `<<` `>>`, which can be used to shift, and reverse the array.
The operation is already documented in the link above:
[[Leetcode Reverse-Bits#Links]]
### Solution
#### Method 1:
```cpp
class Solution {
public:
uint32_t reverseBits(uint32_t n) {
// swap bits inside the function
bitset<32> nb(n);
bool tmp;
int l = 0, r = 31;
while (l < r) {
tmp = nb[l];
nb[l] = nb[r];
nb[r] = tmp;
l++;
r--;
}
return nb.to_ulong();
}
};
```
#### Shifting:
==#TODO solve it using shifting==

View file

@ -0,0 +1,41 @@
# Leetcode Single-Number
#### 2022-07-22 15:31
> ##### Algorithms:
> #algorithm #bit_manipulation
> ##### Data structures:
> #DS #bitset
> ##### Difficulty:
> #coding_problem #difficulty-easy
> ##### Additional tags:
> #leetcode
> ##### Revisions:
> N/A
##### Related topics:
```expander
tag:#bit_manipulation
```
##### Links:
- [Link to problem](https://leetcode.com/problems/single-number/)
___
### Problem
Given a **non-empty** array of integers `nums`, every element appears _twice_ except for one. Find that single one.
You must implement a solution with a linear runtime complexity and use only constant extra space.
#### Examples
#### Constraints
### Thoughts
> [!summary]
> This is a #template_remove_me
### Solution

View file

@ -67,3 +67,41 @@ Same as in [[Leetcode House-Robber]], there are four stages to optimization:
#### Stage 2: recursion with cachinqg #### Stage 2: recursion with cachinqg
### Solution ### Solution
#### Stage 2:
```cpp
class Solution {
vector<vector<int>> cache;
int minimum(vector<vector<int>> &triangle, int level, int l, int r) {
if (level == 0) {
return triangle[0][0];
} else {
int minLen = INT_MAX;
for (int i = l; i <= r; i++) {
if (i < 0 || i > level) {
continue;
}
if (cache[level][i] != -1) {
minLen = min(cache[level][i], minLen);
// cout<<"Using cache: "<<minLen<<" for "<<level<<", "<<i<<'\n';
} else {
cache[level][i] =
triangle[level][i] + minimum(triangle, level - 1, i - 1, i);
minLen = min(cache[level][i], minLen);
}
}
// cout<<minLen<<", "<<level<<'\n';
return minLen;
}
}
public:
int minimumTotal(vector<vector<int>> &triangle) {
// Stage one: recursive
cache =
vector<vector<int>>(triangle.size(), vector<int>(triangle.size(), -1));
return minimum(triangle, triangle.size() - 1, 0, triangle.size() - 1);
}
};
```