vault backup: 2022-09-03 15:06:04

This commit is contained in:
juan 2022-09-03 15:06:04 +08:00
parent 5b0022c21a
commit 4c3b8a0335
3 changed files with 64 additions and 5 deletions

View file

@ -1,5 +1,5 @@
{
"theme": "moonstone",
"theme": "obsidian",
"translucency": true,
"cssTheme": "Atom",
"interfaceFontFamily": "IBM Plex Sans",

View file

@ -1,9 +1,9 @@
{
"collapse-filter": false,
"search": "",
"showTags": false,
"showTags": true,
"showAttachments": false,
"hideUnresolved": false,
"hideUnresolved": true,
"showOrphans": false,
"collapse-color-groups": false,
"colorGroups": [
@ -32,6 +32,6 @@
"repelStrength": 10,
"linkStrength": 1,
"linkDistance": 250,
"scale": 0.6816823949098497,
"close": true
"scale": 0.8153718570546561,
"close": false
}

View file

@ -0,0 +1,59 @@
# Leetcode Search-A-2D-Matrix-II
2022-09-03 14:57
> ##### Algorithms:
> #algorithm #divide_and_conquer
> ##### Data structures:
> #DS #array
> ##### Difficulty:
> #coding_problem #difficulty-medium
> ##### Additional tags:
> #leetcode
> ##### Revisions:
> N/A
##### Links:
- [Link to problem](https://leetcode.com/problems/search-a-2d-matrix-ii/)
___
### Problem
Write an efficient algorithm that searches for a value `target` in an `m x n` integer matrix `matrix`. This matrix has the following properties:
- Integers in each row are sorted in ascending from left to right.
- Integers in each column are sorted in ascending from top to bottom.
#### Examples
**Example 1:**
![](https://assets.leetcode.com/uploads/2020/11/24/searchgrid2.jpg)
```
**Input:** matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
**Output:** true
```
**Example 2:**
![](https://assets.leetcode.com/uploads/2020/11/24/searchgrid.jpg)
```
**Input:** matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
**Output:** false
```
#### Constraints
### Thoughts
> [!summary]
> This is a #divide_and_conquer problem.
It's divide and conquer, because every time we do a action,
the problem is smaller.
Start from the top-right, (alternatively, bottom-left),
because walking left makes the number smaller, and down makes the number bigger.
### Solution