vault backup: 2022-07-17 15:22:55
This commit is contained in:
parent
c1b361ba8d
commit
063655d7ae
172
OJ notes/pages/Leetcode Rotting-Oranges.md
Normal file
172
OJ notes/pages/Leetcode Rotting-Oranges.md
Normal file
|
@ -0,0 +1,172 @@
|
|||
# Leetcode Rotting-Oranges
|
||||
|
||||
#### 2022-07-17 15:12
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #BFS
|
||||
> ##### Data structures:
|
||||
> #DS #vector_2d
|
||||
> ##### Difficulty:
|
||||
> #coding_problem #difficulty-medium
|
||||
> ##### Additional tags:
|
||||
> #leetcode
|
||||
> ##### Revisions:
|
||||
> N/A
|
||||
|
||||
##### Related topics:
|
||||
```expander
|
||||
tag:#<INSERT_TAG_HERE>
|
||||
```
|
||||
|
||||
|
||||
|
||||
##### Links:
|
||||
- [Link to problem](https://leetcode.com/problems/rotting-oranges/)
|
||||
___
|
||||
### Problem
|
||||
|
||||
You are given an `m x n` `grid` where each cell can have one of three values:
|
||||
|
||||
- `0` representing an empty cell,
|
||||
- `1` representing a fresh orange, or
|
||||
- `2` representing a rotten orange.
|
||||
|
||||
Every minute, any fresh orange that is **4-directionally adjacent** to a rotten orange becomes rotten.
|
||||
|
||||
Return _the minimum number of minutes that must elapse until no cell has a fresh orange_. If _this is impossible, return_ `-1`.
|
||||
|
||||
#### Examples
|
||||
|
||||
**Example 1:**
|
||||
|
||||
![](https://assets.leetcode.com/uploads/2019/02/16/oranges.png)
|
||||
|
||||
```
|
||||
**Input:** grid = [[2,1,1],[1,1,0],[0,1,1]]
|
||||
**Output:** 4
|
||||
```
|
||||
|
||||
**Example 2:**
|
||||
|
||||
```
|
||||
**Input:** grid = [[2,1,1],[0,1,1],[1,0,1]]
|
||||
**Output:** -1
|
||||
```
|
||||
**Explanation:** The orange in the bottom left corner (row 2, column 0) is never rotten, because rotting only happens 4-directionally.
|
||||
|
||||
**Example 3:**
|
||||
|
||||
```
|
||||
**Input:** grid = [[0,2]]
|
||||
**Output:** 0
|
||||
```
|
||||
**Explanation:** Since there are already no fresh oranges at minute 0, the answer is just 0.
|
||||
|
||||
#### Constraints
|
||||
|
||||
- `m == grid.length`
|
||||
- `n == grid[i].length`
|
||||
- `1 <= m, n <= 10`
|
||||
- `grid[i][j]` is `0`, `1`, or `2`.
|
||||
|
||||
### Thoughts
|
||||
|
||||
> [!summary]
|
||||
> This is a #BFS problem, because we use it to calculate
|
||||
> the shortest {time, distance}
|
||||
|
||||
Be wary of these special cases:
|
||||
- everything is empty cell -> return -1, no orange => no
|
||||
fresh orange
|
||||
- everything is rotten -> return 0
|
||||
- everything is fresh -> return -1, impossible to rot
|
||||
|
||||
> [!tip] update the value in place vs. in queue
|
||||
> Update in place, such as
|
||||
> ```cpp
|
||||
> if (grid[a + 1][b] != 0) {
|
||||
> queue.push({a, b});
|
||||
> grid[a + 1][b] = 0;
|
||||
> }
|
||||
> ```
|
||||
> Can avoid multiple enqueues, because the value is already
|
||||
> updated, so another node in queue can't push that again.
|
||||
> ```cpp
|
||||
> grid[a][b] = 0;
|
||||
> if (grid[a + 1][b] != 0) {
|
||||
> queue.push({a, b});
|
||||
> }
|
||||
> ```
|
||||
> this code might result in pushing the same node twice.
|
||||
|
||||
### Solution
|
||||
|
||||
```cpp
|
||||
class Solution {
|
||||
public:
|
||||
int orangesRotting(vector<vector<int>> &grid) {
|
||||
// BFS
|
||||
queue<pair<int, int>> todo;
|
||||
int m = grid.size(), n = grid[0].size();
|
||||
int time = -1;
|
||||
bool isGridEmpty = true;
|
||||
int freshCount = 0;
|
||||
|
||||
for (int i = 0; i < m; i++) {
|
||||
for (int j = 0; j < n; j++) {
|
||||
if (grid[i][j] == 2) {
|
||||
// add to queue, rotten
|
||||
todo.push({i, j});
|
||||
} else if (grid[i][j] == 1) {
|
||||
freshCount++;
|
||||
}
|
||||
if (isGridEmpty && grid[i][j] != 0) {
|
||||
isGridEmpty = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int x, y;
|
||||
int offset[] = {-1, 1};
|
||||
int newX, newY;
|
||||
|
||||
// if there is no value, there's no orange -> no fresh orange
|
||||
if (isGridEmpty) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (!todo.empty()) {
|
||||
for (int i = 0, size = todo.size(); i < size; i++) {
|
||||
x = todo.front().first;
|
||||
y = todo.front().second;
|
||||
todo.pop();
|
||||
|
||||
for (int o : offset) {
|
||||
newX = x + o;
|
||||
if (newX >= 0 && newX < m && grid[newX][y] == 1) {
|
||||
todo.push({newX, y});
|
||||
// cout<<"Pushed: "<<newX<<", "<<y<<'\n';
|
||||
grid[newX][y] = 2;
|
||||
freshCount--;
|
||||
}
|
||||
newY = y + o;
|
||||
if (newY >= 0 && newY < n && grid[x][newY] == 1) {
|
||||
todo.push({x, newY});
|
||||
// cout<<"Pushed: "<<x<<", "<<newY<<'\n';
|
||||
grid[x][newY] = 2;
|
||||
freshCount--;
|
||||
}
|
||||
}
|
||||
}
|
||||
time++;
|
||||
}
|
||||
|
||||
// check again if there is a fresh orange
|
||||
if (freshCount != 0) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
return time;
|
||||
}
|
||||
};
|
||||
```
|
Loading…
Reference in a new issue