vault backup: 2022-07-20 14:56:50
This commit is contained in:
parent
8561a2c5cf
commit
04d36288ad
112
OJ notes/pages/Leetcode Climbing-Chairs.md
Normal file
112
OJ notes/pages/Leetcode Climbing-Chairs.md
Normal file
|
@ -0,0 +1,112 @@
|
|||
# Leetcode Climbing-Chairs
|
||||
|
||||
#### 2022-07-20 14:37
|
||||
|
||||
> ##### Algorithms:
|
||||
> #algorithm #dynamic_programming
|
||||
> ##### Difficulty:
|
||||
> #coding_problem #difficulty-easy
|
||||
> ##### Additional tags:
|
||||
> #leetcode
|
||||
> ##### Revisions:
|
||||
> N/A
|
||||
|
||||
##### Related topics:
|
||||
```expander
|
||||
tag:#dynamic_programming
|
||||
```
|
||||
|
||||
|
||||
|
||||
##### Links:
|
||||
- [Link to problem](https://leetcode.com/problems/climbing-stairs/submissions/)
|
||||
___
|
||||
### Problem
|
||||
|
||||
You are climbing a staircase. It takes `n` steps to reach the top.
|
||||
|
||||
Each time you can either climb `1` or `2` steps. In how many distinct ways can you climb to the top?
|
||||
|
||||
#### Examples
|
||||
|
||||
**Example 1:**
|
||||
|
||||
**Input:** n = 2
|
||||
**Output:** 2
|
||||
**Explanation:** There are two ways to climb to the top.
|
||||
1. 1 step + 1 step
|
||||
2. 2 steps
|
||||
|
||||
**Example 2:**
|
||||
|
||||
**Input:** n = 3
|
||||
**Output:** 3
|
||||
**Explanation:** There are three ways to climb to the top.
|
||||
1. 1 step + 1 step + 1 step
|
||||
2. 1 step + 2 steps
|
||||
3. 2 steps + 1 step
|
||||
|
||||
#### Constraints
|
||||
|
||||
- `1 <= n <= 45`
|
||||
|
||||
### Thoughts
|
||||
|
||||
> [!summary]
|
||||
> This is a #dynamic_programming problem. our solution relies on other solutions
|
||||
|
||||
I had come up with an recursive solution, with a little bit of optimizations.
|
||||
|
||||
#### First iteration:
|
||||
|
||||
Base case:
|
||||
- n is 0, 1, 2:
|
||||
return n
|
||||
|
||||
Pseudo code:
|
||||
answer = climb(n - 1) + climb(n - 2);
|
||||
|
||||
This is a brute force-y solution, because there are too much combinations, and we are re-calculating solutions.
|
||||
|
||||
#### Second iteration:
|
||||
|
||||
Base case:
|
||||
- n = 1, 2, **3**
|
||||
Return n
|
||||
|
||||
Note that n == 3 is added, because we will calculate n - 3, which otherwise will make n = 0
|
||||
|
||||
and when n == 0, it should return 1.
|
||||
|
||||
> [!tips] Optimization
|
||||
> We can optimize it because some solutions can be
|
||||
> calculated and used for both 1 step and 2 steps.
|
||||
>
|
||||
> how many ways to climb: one step or two steps
|
||||
> 1 + 1 = 2
|
||||
> 0 + 2 = 2
|
||||
> 1 + 2 = 3
|
||||
> -> 2 x climb two steps, and 1 x climb 3 steps
|
||||
|
||||
### Solution
|
||||
|
||||
Optimized version:
|
||||
```cpp
|
||||
class Solution {
|
||||
public:
|
||||
int climbStairs(int n) {
|
||||
// Dymanic programming, using solution from the past
|
||||
// Recursive, base case: n == 0, 1, 2, 3
|
||||
if (n <= 3) {
|
||||
return n;
|
||||
}
|
||||
|
||||
// how many ways to climb: one step or two steps
|
||||
// 1 + 1 = 2
|
||||
// 0 + 2 = 2
|
||||
// 1 + 2 = 3
|
||||
// -> 2 * climb two steps, and 1 * climb 3 steps
|
||||
return 2 * climbStairs(n - 2) + climbStairs(n - 3);
|
||||
}
|
||||
};
|
||||
```
|
Loading…
Reference in a new issue