2022-06-14 23:33:35 +08:00
# Leetcode Intersection-of-Two-Arrays-II
#### 2022-06-11
2022-09-03 15:41:36 +08:00
2022-06-28 09:07:47 +08:00
##### First revision 2022-06-27
2022-06-14 23:33:35 +08:00
---
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
##### Data structures:
2022-09-03 15:41:36 +08:00
#DS #unordered_map
2022-06-14 23:33:35 +08:00
##### Algorithms:
2022-09-03 15:41:36 +08:00
#algorithm #two_pointers #sort
2022-06-14 23:33:35 +08:00
##### Difficulty:
2022-09-03 15:41:36 +08:00
2022-09-06 20:22:48 +08:00
#leetcode #coding_problem #difficulty_easy
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
##### Related topics:
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
##### Links:
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
- [Link to problem ](https://leetcode.com/problems/intersection-of-two-arrays-ii/ )
- [Solution 2(two pointers method) ](https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/846181/C%2B%2B-Solutions-or-1-%3A-Map-or-2-%3A-Two-Pointer-with-sort )
- [Solution 3 and 4 ](https://leetcode.com/problems/intersection-of-two-arrays-ii/discuss/82243/Solution-to-3rd-follow-up-question )
2022-09-03 15:41:36 +08:00
---
2022-06-14 23:33:35 +08:00
### Problem
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
Given two integer arrays `nums1` and `nums2` , return _an array of their intersection_ . Each element in the result must appear as many times as it shows in both arrays and you may return the result in **any order** .
**Follow up:**
2022-09-03 15:41:36 +08:00
- What if the given array is already sorted? How would you optimize your algorithm?
- What if `nums1` 's size is small compared to `nums2` 's size? Which algorithm is better?
- What if elements of `nums2` are stored on disk, and the memory is limited such that you cannot load all elements into the memory at once?
2022-06-14 23:33:35 +08:00
#### Examples
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
**Example 1:**
```
**Input:** nums1 = [1,2,2,1], nums2 = [2,2]
**Output:** [2,2]
```
**Example 2:**
```
**Input:** nums1 = [4,9,5], nums2 = [9,4,9,8,4]
**Output:** [4,9]
**Explanation:** [9,4] is also accepted.
```
#### Constraints
- 1 < = nums1.length, nums2.length < = 1000
- 0 < = nums1[i], nums2[i] < = 1000
### Thoughts
For the original problem, I thought up an O(m + n) algo, that uses C++'s [[cpp_std_unordered_map]], and for the second one, I use double pointer method.
2022-06-28 09:07:47 +08:00
> [!tip]
> Because elements can be duplicated and we need to know how many, we should use unordered map to store the item's appereance times, (Maybe multiset can work too.)
2022-09-03 15:41:36 +08:00
> [!tip] Use [[cpp_std_unordered_map]] for a O(1) hash table when not sorted #tip
2022-06-14 23:33:35 +08:00
2022-09-03 15:41:36 +08:00
> [!tip] Use [[cpp_std_sort]] to sort anything. #tip
2022-06-14 23:33:35 +08:00
### Solution
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
Unordered map way O(m + n)
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
```cpp
class Solution {
public:
vector< int > intersect(vector< int > & nums1, vector< int > & nums2) {
vector< int > answer;
unordered_map< int , int > umap;
for (int i = 0; i < nums1.size ( ) ; i + + ) {
umap[nums1[i]]++;
}
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
for (int i = 0; i < nums2.size ( ) ; i + + ) {
if (umap[nums2[i]] != 0) {
answer.push_back(nums2[i]);
umap[nums2[i]]--;
}
}
return answer;
}
};
2022-09-03 15:41:36 +08:00
```