notes/OJ notes/pages/Leetcode 01-Matrix.md

153 lines
2.9 KiB
Markdown
Raw Normal View History

2022-07-18 14:57:32 +08:00
# Leetcode 01-Matrix
2022-07-17 11:27:52 +08:00
#### 2022-07-17 03:15
> ##### Algorithms:
2022-09-03 15:41:36 +08:00
>
> #algorithm #BFS
>
2022-07-17 11:27:52 +08:00
> ##### Data structures:
2022-09-03 15:41:36 +08:00
>
> #DS #vector_2d
>
2022-07-17 11:27:52 +08:00
> ##### Difficulty:
2022-09-03 15:41:36 +08:00
>
2022-09-06 20:22:48 +08:00
> #coding_problem #difficulty_medium
2022-09-03 15:41:36 +08:00
>
2022-07-17 11:27:52 +08:00
> ##### Additional tags:
2022-09-03 15:41:36 +08:00
>
> #leetcode #CS_list_need_understanding
>
2022-07-17 11:27:52 +08:00
> ##### Revisions:
2022-09-03 15:41:36 +08:00
>
2022-09-20 15:15:39 +08:00
> 2022-09-20
2022-07-17 11:27:52 +08:00
##### Related topics:
2022-09-03 15:41:36 +08:00
2022-07-17 11:27:52 +08:00
##### Links:
2022-09-03 15:41:36 +08:00
2022-07-17 11:27:52 +08:00
- [Link to problem](https://leetcode.com/problems/01-matrix/)
2022-09-03 15:41:36 +08:00
---
2022-07-17 11:27:52 +08:00
### Problem
Given an `m x n` binary matrix `mat`, return _the distance of the nearest_ `0` _for each cell_.
The distance between two adjacent cells is `1`.
#### Examples
**Example 1:**
![](https://assets.leetcode.com/uploads/2021/04/24/01-1-grid.jpg)
```
**Input:** mat = [[0,0,0],[0,1,0],[0,0,0]]
**Output:** [[0,0,0],[0,1,0],[0,0,0]]
```
**Example 2:**
![](https://assets.leetcode.com/uploads/2021/04/24/01-2-grid.jpg)
```
**Input:** mat = [[0,0,0],[0,1,0],[1,1,1]]
**Output:** [[0,0,0],[0,1,0],[1,2,1]]
```
#### Constraints
2022-09-03 15:41:36 +08:00
- `m == mat.length`
- `n == mat[i].length`
- `1 <= m, n <= 104`
- `1 <= m * n <= 104`
- `mat[i][j]` is either `0` or `1`.
- There is at least one `0` in `mat`.
2022-07-17 11:27:52 +08:00
### Thoughts
> [!summary]
> This is a #BFS problem, because it needs to find
2022-09-03 15:41:36 +08:00
> a smallest distance
2022-07-17 11:27:52 +08:00
#### Why not DFS
I tried with DFS, but
2022-09-03 15:41:36 +08:00
1. it is not suitable for finding smallest distance
2022-07-17 11:27:52 +08:00
2. and is easy to go into a infinite loop.
2022-09-03 15:41:36 +08:00
3. Also, it is hard to determine whether to revisit (update)
2022-07-17 11:27:52 +08:00
the distance.
#### BFS
Start searching from 0s, because the search direction matters.
pseudo code:
- Initialization stage:
2022-09-03 15:41:36 +08:00
- add every 0 to queue
- make every 1 a infinite large number, (10001 this case)
2022-07-17 11:27:52 +08:00
- while queue is not empty
2022-09-03 15:41:36 +08:00
- check for neighbors
- if OOB (Out of Bound), skip
- if the value of neighbor's distance is higher than
the node, update it, and add it to queue(also update
his neighbors)
2022-07-17 11:27:52 +08:00
### Solution
```cpp
class Solution {
const int MAX = 10002;
public:
vector<vector<int>> updateMatrix(vector<vector<int>> &mat) {
// Shouldn't use DFS, since DFS is likely to run into a loop
queue<pair<int, int>> todo;
int m = mat.size(), n = mat[0].size();
for (int i = 0; i < m; i++) {
for (int j = 0; j < n; j++) {
if (mat[i][j] == 0) {
todo.push({i, j});
} else {
mat[i][j] = MAX;
}
}
}
int offset[] = {-1, 1};
int x, y;
int newX, newY;
int dist;
while (!todo.empty()) {
x = todo.front().first;
y = todo.front().second;
todo.pop();
dist = mat[x][y];
for (int i : offset) {
newX = x + i;
if (newX < m && newX >= 0) {
if (mat[newX][y] > dist + 1) {
mat[newX][y] = dist + 1;
todo.push({newX, y});
}
}
newY = y + i;
if (newY < n && newY >= 0) {
if (mat[x][newY] > dist + 1) {
mat[x][newY] = dist + 1;
todo.push({x, newY});
}
}
}
}
return mat;
}
};
2022-09-03 15:41:36 +08:00
```