2022-06-14 23:33:35 +08:00
# Leetcode Reshape-The-Matrix
#### 2022-06-12
---
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
##### Data structures:
2022-09-03 15:41:36 +08:00
#DS #array #vector
2022-06-14 23:33:35 +08:00
##### Difficulty:
2022-09-03 15:41:36 +08:00
2022-09-06 20:22:48 +08:00
#leetcode #coding_problem #difficulty_easy
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
##### Related topics:
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
##### Links:
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
- [Link to problem ](https://leetcode.com/problems/reshape-the-matrix/ )
2022-09-03 15:41:36 +08:00
---
2022-06-14 23:33:35 +08:00
### Problem
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
In MATLAB, there is a handy function called `reshape` which can reshape an `m x n` matrix into a new one with a different size `r x c` keeping its original data.
You are given an `m x n` matrix `mat` and two integers `r` and `c` representing the number of rows and the number of columns of the wanted reshaped matrix.
The reshaped matrix should be filled with all the elements of the original matrix in the same row-traversing order as they were.
If the `reshape` operation with given parameters is possible and legal, output the new reshaped matrix; Otherwise, output the original matrix.
#### Examples
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
```markdown
**Input:** mat = [[1,2],[3,4]], r = 1, c = 4
**Output:** [[1,2,3,4]]
```
#### Constraints
2022-09-03 15:41:36 +08:00
- m == mat.length
- n == mat[i].length
- 1 < = m, n < = 100
- -1000 < = mat[i][j] < = 1000
- 1 < = r, c < = 300
2022-06-14 23:33:35 +08:00
### Thoughts
First is the O(mn) solution, I use nested for loop with two additional vars
Then, from the hint, I know we can transform any array to 1-D, then transform 1-D to any array, that is to said:
> [!summary]
> For arr[m][n] and ans[r][c] and iterator i, with temp 1-D array temp[i]:
> temp[i] = arr[i / n][i % n] = ans[i / c][i % c]
### Solution
O(nm) solution using two loops
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
```cpp
class Solution {
public:
vector< vector < int > > matrixReshape(vector< vector < int > > & mat, int r, int c) {
// Initialize the answer vector
vector< vector < int > > ans(r);
for (int i = 0; i < ans.size ( ) ; i + + ) {
ans[i] = vector< int > (c);
}
// if the vector is not possible, return original.
if (mat[0].size() * mat.size() != r * c) {
return mat;
}
int rCounter = 0;
int cCounter = 0;
for (int i = 0; i < mat.size ( ) ; i + + ) {
for (int j = 0; j < mat [ i ] . size ( ) ; j + + ) {
if (cCounter >= c) {
rCounter++;
cCounter = cCounter % c;
}
ans[rCounter][cCounter++] = mat[i][j];
}
}
return ans;
}
};
```
O(mn) Solution using one loop
2022-09-03 15:41:36 +08:00
2022-06-14 23:33:35 +08:00
> [!tip]
> use `vector<vector<int>> ans(r, vector<int>(c));`
> to initialize a 2-d vector
```cpp
class Solution {
public:
vector< vector < int > > matrixReshape(vector< vector < int > > & mat, int r, int c) {
// Initialize the answer vector
vector< vector < int > > ans(r, vector< int > (c));
int m = mat.size();
int n = mat[0].size();
int total = m * n;
// if the vector is not possible, return original.
if (total != r * c) {
return mat;
}
for (int i = 0; i < total ; i + + ) {
ans[i / c][i % c] = mat[i / n][i % n];
}
return ans;
}
};
2022-09-03 15:41:36 +08:00
```