100 lines
2.1 KiB
Markdown
100 lines
2.1 KiB
Markdown
|
# Leetcode Number-of-1-Bits
|
||
|
|
||
|
#### 2022-07-22 14:45
|
||
|
|
||
|
> ##### Algorithms:
|
||
|
> #algorithm #bit_manipulation
|
||
|
> ##### Data structures:
|
||
|
> #DS #bitset
|
||
|
> ##### Difficulty:
|
||
|
> #coding_problem #difficulty-easy
|
||
|
> ##### Additional tags:
|
||
|
> #leetcode
|
||
|
> ##### Revisions:
|
||
|
> N/A
|
||
|
|
||
|
##### Related topics:
|
||
|
##### Links:
|
||
|
- [Link to problem](https://leetcode.com/problems/number-of-1-bits/)
|
||
|
___
|
||
|
### Problem
|
||
|
|
||
|
Write a function that takes an unsigned integer and returns the number of '1' bits it has (also known as the [Hamming weight](http://en.wikipedia.org/wiki/Hamming_weight)).
|
||
|
|
||
|
#### Examples
|
||
|
|
||
|
**Example 1:**
|
||
|
|
||
|
**Input:** n = 00000000000000000000000000001011
|
||
|
**Output:** 3
|
||
|
**Explanation:** The input binary string **00000000000000000000000000001011** has a total of three '1' bits.
|
||
|
|
||
|
**Example 2:**
|
||
|
|
||
|
**Input:** n = 00000000000000000000000010000000
|
||
|
**Output:** 1
|
||
|
**Explanation:** The input binary string **00000000000000000000000010000000** has a total of one '1' bit.
|
||
|
|
||
|
**Example 3:**
|
||
|
|
||
|
**Input:** n = 11111111111111111111111111111101
|
||
|
**Output:** 31
|
||
|
**Explanation:** The input binary string **11111111111111111111111111111101** has a total of thirty one '1' bits.
|
||
|
|
||
|
#### Constraints
|
||
|
|
||
|
- The input must be a **binary string** of length `32`.
|
||
|
|
||
|
### Thoughts
|
||
|
|
||
|
> [!summary]
|
||
|
> This is a #bit_manipulation problem.
|
||
|
|
||
|
Two methods for this problem.
|
||
|
|
||
|
#### Method 1: cpp's STL implementation
|
||
|
|
||
|
simply use [bitset::count](https://en.cppreference.com/w/cpp/utility/bitset/count)
|
||
|
|
||
|
#### Method 2: (n & (n - 1)) method
|
||
|
|
||
|
By using n = (n & (n - 1)), we can remove the last `true` in the original bitset:
|
||
|
|
||
|
```
|
||
|
5 : 101
|
||
|
4 : 100
|
||
|
5 & 4 : 100
|
||
|
|
||
|
10 : 1010
|
||
|
9 : 1001
|
||
|
10 & 9 : 1000
|
||
|
```
|
||
|
|
||
|
n - 1 changes the trailing `false`s to `true`, and change the last `true` to false, and by AND operation, we can remove the last `true` bit.
|
||
|
|
||
|
### Solution
|
||
|
|
||
|
#### CPP STL:
|
||
|
|
||
|
```cpp
|
||
|
class Solution {
|
||
|
public:
|
||
|
int hammingWeight(uint32_t n) { return bitset<32>(n).count(); }
|
||
|
};
|
||
|
````
|
||
|
|
||
|
#### Method 2:
|
||
|
|
||
|
```cpp
|
||
|
class Solution {
|
||
|
public:
|
||
|
int hammingWeight(uint32_t n) {
|
||
|
int count = 0;
|
||
|
while (n != 0) {
|
||
|
n = (n & (n - 1));
|
||
|
count++;
|
||
|
}
|
||
|
return count;
|
||
|
}
|
||
|
};
|
||
|
```
|