2022-06-14 23:33:35 +08:00
|
|
|
# Binary Search Algorithm
|
|
|
|
|
|
|
|
#### 2022-06-13 15:46
|
|
|
|
|
|
|
|
___
|
|
|
|
##### Algorithms:
|
|
|
|
#algorithm #binary_search
|
|
|
|
##### Data structures:
|
|
|
|
#array #vector #set #multiset
|
|
|
|
##### Difficulty:
|
|
|
|
#CS_analysis #difficulty-easy
|
|
|
|
##### Related problems:
|
|
|
|
##### Links:
|
|
|
|
- [g4g for manual implementation](https://www.geeksforgeeks.org/binary-search/)
|
|
|
|
- [cppreference, find](https://en.cppreference.com/w/cpp/container/set/find)
|
|
|
|
___
|
|
|
|
|
|
|
|
### How to implement Binary search?
|
|
|
|
|
|
|
|
#### a: Use cpp's library
|
|
|
|
Use cpp's set's [find](https://en.cppreference.com/w/cpp/container/set/find)
|
|
|
|
or [equal_range](https://en.cppreference.com/w/cpp/container/multiset/equal_range)
|
|
|
|
|
|
|
|
#### b: Manual
|
2022-07-09 10:02:11 +08:00
|
|
|
|
|
|
|
##### Tips:
|
|
|
|
|
|
|
|
> [!tip] Why `mid = l + (r - l) / 2`, not `mid = (l + r) / 2`
|
|
|
|
> Avoids integer overflow when l and r is big
|
|
|
|
|
|
|
|
> [!tip] Why `r = array.size() - 1`
|
|
|
|
> Avoids OOB when (l == r && r == array.size())
|
|
|
|
> This happens if 1 is not subtracted
|
|
|
|
|
2022-06-14 23:33:35 +08:00
|
|
|
1. Use a while loop:
|
|
|
|
[[Leetcode Search-a-2D-Matrix#Solution]]
|
|
|
|
|
|
|
|
2. Use recursion:
|
|
|
|
from g4g:
|
|
|
|
```cpp
|
|
|
|
// C++ program to implement recursive Binary Search
|
|
|
|
#include <bits/stdc++.h>
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
// A recursive binary search function. It returns
|
|
|
|
// location of x in given array arr[l..r] is present,
|
|
|
|
// otherwise -1
|
|
|
|
int binarySearch(int arr[], int l, int r, int x) {
|
|
|
|
if (r >= l) {
|
|
|
|
int mid = l + (r - l) / 2;
|
|
|
|
|
|
|
|
// If the element is present at the middle
|
|
|
|
// itself
|
|
|
|
if (arr[mid] == x)
|
|
|
|
return mid;
|
|
|
|
|
|
|
|
// If element is smaller than mid, then
|
|
|
|
// it can only be present in left subarray
|
|
|
|
if (arr[mid] > x)
|
|
|
|
return binarySearch(arr, l, mid - 1, x);
|
|
|
|
|
|
|
|
// Else the element can only be present
|
|
|
|
// in right subarray
|
|
|
|
return binarySearch(arr, mid + 1, r, x);
|
|
|
|
}
|
|
|
|
|
|
|
|
// We reach here when element is not
|
|
|
|
// present in array
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int main(void) {
|
|
|
|
int arr[] = {2, 3, 4, 10, 40};
|
|
|
|
int x = 10;
|
|
|
|
int n = sizeof(arr) / sizeof(arr[0]);
|
|
|
|
int result = binarySearch(arr, 0, n - 1, x);
|
|
|
|
(result == -1) ? cout << "Element is not present in array"
|
|
|
|
: cout << "Element is present at index " << result;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
```
|