102 lines
2 KiB
Markdown
102 lines
2 KiB
Markdown
|
# Leetcode Happy-Number
|
||
|
|
||
|
#### 2022-07-26 09:12
|
||
|
|
||
|
> ##### Algorithms:
|
||
|
> #algorithm #Floyd_s_cycle_finding_algorithm
|
||
|
> ##### Difficulty:
|
||
|
> #coding_problem #difficulty-easy
|
||
|
> ##### Additional tags:
|
||
|
> #leetcode
|
||
|
> ##### Revisions:
|
||
|
> N/A
|
||
|
|
||
|
##### Related topics:
|
||
|
```expander
|
||
|
tag:#Floyd_s_cycle_finding_algorithm
|
||
|
```
|
||
|
|
||
|
|
||
|
|
||
|
##### Links:
|
||
|
- [Link to problem](https://leetcode.com/problems/happy-number/)
|
||
|
___
|
||
|
### Problem
|
||
|
|
||
|
Write an algorithm to determine if a number `n` is happy.
|
||
|
|
||
|
A **happy number** is a number defined by the following process:
|
||
|
|
||
|
- Starting with any positive integer, replace the number by the sum of the squares of its digits.
|
||
|
- Repeat the process until the number equals 1 (where it will stay), or it **loops endlessly in a cycle** which does not include 1.
|
||
|
- Those numbers for which this process **ends in 1** are happy.
|
||
|
|
||
|
Return `true` _if_ `n` _is a happy number, and_ `false` _if not_.
|
||
|
|
||
|
#### Examples
|
||
|
|
||
|
**Example 1:**
|
||
|
|
||
|
**Input:** n = 19
|
||
|
**Output:** true
|
||
|
**Explanation:**
|
||
|
12 + 92 = 82
|
||
|
82 + 22 = 68
|
||
|
62 + 82 = 100
|
||
|
12 + 02 + 02 = 1
|
||
|
|
||
|
**Example 2:**
|
||
|
|
||
|
**Input:** n = 2
|
||
|
**Output:** false
|
||
|
|
||
|
#### Constraints
|
||
|
|
||
|
- `1 <= n <= 231 - 1`
|
||
|
|
||
|
### Thoughts
|
||
|
|
||
|
> [!summary]
|
||
|
> This is a #Floyd_s_cycle_finding_algorithm
|
||
|
|
||
|
This works, because as the problem mentioned, this will result in a endless loop.
|
||
|
|
||
|
So, by using fast ans slow, we can determine whether there is a loop.
|
||
|
|
||
|
And, when fast hit 1, we know slow will eventually reach the
|
||
|
answer, so we return early. (but in the cost of time of checking).
|
||
|
|
||
|
### Solution
|
||
|
|
||
|
```cpp
|
||
|
class Solution {
|
||
|
int getDigitSqrt(int i) {
|
||
|
int sum = 0;
|
||
|
|
||
|
while (i) {
|
||
|
sum += (i % 10) * (i % 10);
|
||
|
i /= 10;
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
public:
|
||
|
bool isHappy(int n) {
|
||
|
// Floyd cycle finding algorighm.
|
||
|
int slow, fast;
|
||
|
slow = fast = n;
|
||
|
|
||
|
do {
|
||
|
slow = getDigitSqrt(slow);
|
||
|
fast = getDigitSqrt(fast);
|
||
|
fast = getDigitSqrt(fast);
|
||
|
if (fast == 1) {
|
||
|
return true;
|
||
|
}
|
||
|
} while (fast != slow);
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
};
|
||
|
```
|