notes/OJ notes/pages/Leetcode Search-In-a-Binary-Tree.md

186 lines
3.9 KiB
Markdown
Raw Normal View History

2022-07-07 08:16:24 +08:00
# Leetcode Search-In-a-Binary-Tree
#### 2022-07-07 08:06
> ##### Algorithms:
> #algorithm #DFS #BFS
> ##### Data structures:
> #DS #binary_tree
> ##### Difficulty:
> #coding_problem #difficulty-easy
> ##### Additional tags:
> #leetcode
> ##### Revisions:
> N/A
##### Related topics:
```expander
tag:#DFS OR tag:#BFS
```
- [[Leetcode Binary-Tree-Inorder-Traversal]]
- [[Leetcode Binary-Tree-Level-Order-Traversal]]
- [[Leetcode Binary-Tree-Postorder-Traversal]]
- [[Leetcode Binary-Tree-Preorder-Traversal]]
- [[Leetcode Invert-Binary-Tree]]
- [[Leetcode Maximum-Depth-Of-Binary-Tree]]
- [[Leetcode Path-Sum]]
- [[Leetcode Symmetric-Tree]]
##### Links:
- [Link to problem](https://leetcode.com/problems/search-in-a-binary-search-tree/submissions/)
___
### Problem
You are given the `root` of a binary search tree (BST) and an integer `val`.
Find the node in the BST that the node's value equals `val` and return the subtree rooted with that node. If such a node does not exist, return `null`.
#### Examples
Example 1:
Input: root = [4,2,7,1,3], val = 2
Output: [2,1,3]
Example 2:
Input: root = [4,2,7,1,3], val = 5
Output: []
#### Constraints
- The number of nodes in the tree is in the range `[1, 5000]`.
- `1 <= Node.val <= 107`
- `root` is a binary search tree.
- `1 <= val <= 107`
### Thoughts
> [!summary]
> This is a #DFS or #BFS problem. We search values in the tree.
2022-07-07 08:37:25 +08:00
In DFS, I use preorder, since the root value will be check first, making it quicker if data appear on shallow trees more.
In BFS, I don't have use for loop inside while loop, since we don't have to consider levels.
2022-07-07 08:16:24 +08:00
### Solution
DFS
```cpp
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
TreeNode *searchBST(TreeNode *root, int val) {
// DFS preorder
// Base cases
if (!root) {
return nullptr;
}
if (root->val == val) {
return root;
}
auto left = searchBST(root->left, val);
if (left) {
return left;
}
auto right = searchBST(root->right, val);
if (right) {
return right;
}
// left and right not found
return nullptr;
}
};
```
Which can be simplified to
```cpp
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
// DFS preorder
// Base cases
if (!root) {
return nullptr;
}
if (root->val == val) {
return root;
}
auto left = searchBST(root->left, val);
if (left) {
return left;
}
return searchBST(root->right, val);
}
};
```
BFS
```cpp
2022-07-07 08:37:25 +08:00
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
* right(right) {}
* };
*/
class Solution {
public:
TreeNode *searchBST(TreeNode *root, int val) {
// BFS
queue<TreeNode *> pending;
pending.push(root);
TreeNode *ptr;
while (!pending.empty()) {
ptr = pending.front();
pending.pop();
if (ptr->val == val) {
return ptr;
}
if (ptr->left)
pending.push(ptr->left);
if (ptr->right)
pending.push(ptr->right);
}
2022-07-07 08:16:24 +08:00
2022-07-07 08:37:25 +08:00
return nullptr;
}
};
2022-07-07 08:16:24 +08:00
```