2022-07-05 09:22:08 +08:00
|
|
|
# Leetcode Binary-Tree-Level-Order-Traversal
|
|
|
|
|
|
|
|
#### 2022-07-05 09:09
|
|
|
|
|
|
|
|
> ##### Algorithms:
|
|
|
|
> #algorithm #BFS
|
|
|
|
> ##### Data structures:
|
|
|
|
> #DS #binary_tree
|
|
|
|
> ##### Difficulty:
|
|
|
|
> #coding_problem #difficulty-medium
|
|
|
|
> ##### Additional tags:
|
|
|
|
> #leetcode
|
|
|
|
> ##### Revisions:
|
|
|
|
> N/A
|
|
|
|
|
|
|
|
##### Related topics:
|
|
|
|
```expander
|
|
|
|
tag:#BFS
|
|
|
|
```
|
|
|
|
|
2022-07-05 10:48:41 +08:00
|
|
|
- [[Leetcode Maximum-Depth-Of-Binary-Tree]]
|
2022-07-07 08:16:24 +08:00
|
|
|
- [[Leetcode Search-In-a-Binary-Tree]]
|
2022-07-05 09:22:08 +08:00
|
|
|
|
|
|
|
|
|
|
|
##### Links:
|
|
|
|
- [Link to problem](https://leetcode.com/problems/binary-tree-level-order-traversal/)
|
|
|
|
___
|
|
|
|
### Problem
|
|
|
|
Given the `root` of a binary tree, return _the level order traversal of its nodes' values_. (i.e., from left to right, level by level).
|
|
|
|
|
|
|
|
#### Examples
|
|
|
|
**Example 1:**
|
|
|
|
|
|
|
|
![](https://assets.leetcode.com/uploads/2021/02/19/tree1.jpg)
|
|
|
|
|
2022-07-05 09:44:58 +08:00
|
|
|
**Input:** root = `[3,9,20,null,null,15,7]`
|
|
|
|
**Output:** `[[3],[9,20],[15,7]]`
|
2022-07-05 09:22:08 +08:00
|
|
|
|
|
|
|
**Example 2:**
|
|
|
|
|
|
|
|
**Input:** root = [1]
|
2022-07-05 09:44:58 +08:00
|
|
|
**Output:** `[[1]]`
|
2022-07-05 09:22:08 +08:00
|
|
|
|
|
|
|
**Example 3:**
|
|
|
|
|
|
|
|
**Input:** root = []
|
|
|
|
**Output:** []
|
|
|
|
|
|
|
|
#### Constraints
|
|
|
|
- The number of nodes in the tree is in the range `[0, 2000]`.
|
|
|
|
- `-1000 <= Node.val <= 1000`
|
|
|
|
### Thoughts
|
|
|
|
|
|
|
|
> [!summary]
|
|
|
|
> This is a #BFS problem.
|
|
|
|
|
|
|
|
In contrary to DFS, BFS uses queue. and there are many tricks for pushing 2d arrays.
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
vector<vector<int>> vec;
|
|
|
|
vec.push_back({});
|
|
|
|
vec.back().push_back(5);
|
2022-07-05 09:44:58 +08:00
|
|
|
// [[ 5 ]]
|
2022-07-05 09:22:08 +08:00
|
|
|
```
|
|
|
|
### Solution
|
|
|
|
|
|
|
|
```cpp
|
|
|
|
/**
|
|
|
|
* Definition for a binary tree node.
|
|
|
|
* struct TreeNode {
|
|
|
|
* int val;
|
|
|
|
* TreeNode *left;
|
|
|
|
* TreeNode *right;
|
|
|
|
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
|
|
|
|
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
|
|
|
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),
|
|
|
|
* right(right) {}
|
|
|
|
* };
|
|
|
|
*/
|
|
|
|
class Solution {
|
|
|
|
public:
|
|
|
|
vector<vector<int>> levelOrder(TreeNode *root) {
|
|
|
|
// Using queue
|
|
|
|
queue<TreeNode *> pending;
|
|
|
|
vector<vector<int>> answer;
|
|
|
|
|
|
|
|
TreeNode *ptr = root;
|
|
|
|
if (ptr)
|
|
|
|
pending.push(ptr);
|
|
|
|
|
|
|
|
while (!pending.empty()) {
|
|
|
|
answer.push_back({});
|
|
|
|
// After each while loop, every element in queue is in next level.
|
|
|
|
for (int i = 0, size = pending.size(); i < size; i++) {
|
|
|
|
ptr = pending.front();
|
|
|
|
pending.pop();
|
|
|
|
|
|
|
|
if (ptr->left)
|
|
|
|
pending.push(ptr->left);
|
|
|
|
if (ptr->right)
|
|
|
|
pending.push(ptr->right);
|
|
|
|
|
|
|
|
answer.back().push_back(ptr->val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return answer;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
```
|