notes/OJ notes/pages/Binary Search Algorithm.md

79 lines
1.9 KiB
Markdown
Raw Normal View History

2022-06-14 23:33:35 +08:00
# Binary Search Algorithm
#### 2022-06-13 15:46
___
##### Algorithms:
#algorithm #binary_search
##### Data structures:
#array #vector #set #multiset
##### Difficulty:
#CS_analysis #difficulty-easy
##### Related problems:
```expander
tag:#coding_problem tag:#binary_search -tag:#template_remove_me
```
- [[Leetcode Search-a-2D-Matrix]]
##### Links:
- [g4g for manual implementation](https://www.geeksforgeeks.org/binary-search/)
- [cppreference, find](https://en.cppreference.com/w/cpp/container/set/find)
___
### How to implement Binary search?
#### a: Use cpp's library
Use cpp's set's [find](https://en.cppreference.com/w/cpp/container/set/find)
or [equal_range](https://en.cppreference.com/w/cpp/container/multiset/equal_range)
#### b: Manual
1. Use a while loop:
[[Leetcode Search-a-2D-Matrix#Solution]]
2. Use recursion:
from g4g:
```cpp
// C++ program to implement recursive Binary Search
#include <bits/stdc++.h>
using namespace std;
// A recursive binary search function. It returns
// location of x in given array arr[l..r] is present,
// otherwise -1
int binarySearch(int arr[], int l, int r, int x) {
if (r >= l) {
int mid = l + (r - l) / 2;
// If the element is present at the middle
// itself
if (arr[mid] == x)
return mid;
// If element is smaller than mid, then
// it can only be present in left subarray
if (arr[mid] > x)
return binarySearch(arr, l, mid - 1, x);
// Else the element can only be present
// in right subarray
return binarySearch(arr, mid + 1, r, x);
}
// We reach here when element is not
// present in array
return -1;
}
int main(void) {
int arr[] = {2, 3, 4, 10, 40};
int x = 10;
int n = sizeof(arr) / sizeof(arr[0]);
int result = binarySearch(arr, 0, n - 1, x);
(result == -1) ? cout << "Element is not present in array"
: cout << "Element is present at index " << result;
return 0;
}
```