logseq_notes/assets/section_2.2_1686907456219_0.edn
2023-06-16 17:36:59 +08:00

212 lines
11 KiB
Clojure

{:highlights [{:id #uuid "648c2a50-7acf-4cd5-b075-d0e970e114a4",
:page 3,
:position {:bounding {:x1 14.173179626464844,
:y1 13.255218505859375,
:x2 420.41524505615234,
:y2 39.921875,
:width 604.7249999999999,
:height 453.54333333333324},
:rects ({:x1 14.173179626464844,
:y1 13.255218505859375,
:x2 420.41524505615234,
:y2 39.921875,
:width 604.7249999999999,
:height 453.54333333333324}),
:page 3},
:content {:text "The Definition of Distribution Function"},
:properties {:color "blue"}}
{:id #uuid "648c2a73-3961-4723-90e8-5f160bb18e0d",
:page 4,
:position {:bounding {:x1 14.173179626464844,
:y1 13.255218505859375,
:x2 424.4708786010742,
:y2 39.921875,
:width 604.7249999999999,
:height 453.54333333333324},
:rects ({:x1 14.173179626464844,
:y1 13.255218505859375,
:x2 424.4708786010742,
:y2 39.921875,
:width 604.7249999999999,
:height 453.54333333333324}),
:page 4},
:content {:text "The Properties of Distribution Function"},
:properties {:color "blue"}}
{:id #uuid "648c2a88-3d0f-47d2-be44-21df002a1def",
:page 4,
:position {:bounding {:x1 43,
:y1 79.4166259765625,
:x2 685,
:y2 357.4166259765625,
:width 725.67,
:height 544.252},
:rects (),
:page 4},
:content {:text "[:span]", :image 1686907527770},
:properties {:color "yellow"}}
{:id #uuid "648c2abf-5c5e-4af9-9e13-bb566f3206e8",
:page 7,
:position {:bounding {:x1 40,
:y1 92.583251953125,
:x2 690,
:y2 316.583251953125,
:width 725.67,
:height 544.252},
:rects (),
:page 7},
:content {:text "[:span]", :image 1686907580838},
:properties {:color "yellow"}}
{:id #uuid "648c2b26-e92d-43f7-b8e1-60b51a2b5268",
:page 9,
:position {:bounding {:x1 41,
:y1 107.91650390625,
:x2 695,
:y2 493.91650390625,
:width 725.67,
:height 544.252},
:rects (),
:page 9},
:content {:text "[:span]", :image 1686907685844},
:properties {:color "yellow"}}
{:id #uuid "648c2be0-787e-4e1f-8d0c-b859f0d08383",
:page 17,
:position {:bounding {:x1 0,
:y1 92.68229675292969,
:x2 669.0964965820312,
:y2 342.2200469970703,
:width 725.67,
:height 544.252},
:rects ({:x1 0,
:y1 92.68229675292969,
:x2 0,
:y2 115.18229675292969,
:width 725.67,
:height 544.252}
{:x1 56.686195373535156,
:y1 290.95701599121094,
:x2 669.0964965820312,
:y2 315.1237030029297,
:width 725.67,
:height 544.252}
{:x1 56.686195373535156,
:y1 318.0533905029297,
:x2 621.4563980102539,
:y2 342.2200469970703,
:width 725.67,
:height 544.252}),
:page 17},
:content {:text "A random variable is said to be of discrete type if the number of different values it can take is finite or countably infinite."},
:properties {:color "yellow"}}
{:id #uuid "648c2c54-b536-40ba-8191-ef1aeb2be0b9",
:page 25,
:position {:bounding {:x1 0,
:y1 28.671875,
:x2 669.1324462890625,
:y2 235.19529724121094,
:width 725.67,
:height 544.252},
:rects ({:x1 0,
:y1 28.671875,
:x2 0,
:y2 51.171875,
:width 725.67,
:height 544.252}
{:x1 56.686195373535156,
:y1 182.6822967529297,
:x2 669.1324462890625,
:y2 206.8489532470703,
:width 725.67,
:height 544.252}
{:x1 56.686195373535156,
:y1 209.7786407470703,
:x2 619.7694091796875,
:y2 235.19529724121094,
:width 725.67,
:height 544.252}),
:page 25},
:content {:text "We call X a continuous random variable if there is a function f defined for all x ∈ R and having the following properties:"},
:properties {:color "yellow"}}
{:id #uuid "648c2c9a-fcca-43e3-94a6-466f52131b48",
:page 35,
:position {:bounding {:x1 0,
:y1 -3.3333282470703125,
:x2 659.5091133117676,
:y2 83.77604675292969,
:width 725.67,
:height 544.252},
:rects ({:x1 0,
:y1 -3.3333282470703125,
:x2 0,
:y2 19.166671752929688,
:width 725.67,
:height 544.252}
{:x1 17.005207061767578,
:y1 15.826828002929688,
:x2 659.5091133117676,
:y2 47.91015625,
:width 725.67,
:height 544.252}
{:x1 17.005207061767578,
:y1 51.692718505859375,
:x2 118.45283889770508,
:y2 83.77604675292969,
:width 725.67,
:height 544.252}),
:page 35},
:content {:text "The Distribution Function of Function of a Random Variable"},
:properties {:color "blue"}}
{:id #uuid "648c2d05-82d4-472f-901c-b362852e2a3a",
:page 35,
:position {:bounding {:x1 0,
:y1 44.674476623535156,
:x2 641.643798828125,
:y2 325.9700393676758,
:width 725.67,
:height 544.252},
:rects ({:x1 0,
:y1 44.674476623535156,
:x2 0,
:y2 67.17447662353516,
:width 725.67,
:height 544.252}
{:x1 0,
:y1 60.67708110809326,
:x2 0,
:y2 83.17708110809326,
:width 725.67,
:height 544.252}
{:x1 0,
:y1 76.67968463897705,
:x2 0,
:y2 99.17968463897705,
:width 725.67,
:height 544.252}
{:x1 508.04888916015625,
:y1 204.24478912353516,
:x2 641.643798828125,
:y2 228.41144561767578,
:width 725.67,
:height 544.252}
{:x1 56.686195373535156,
:y1 236.76432037353516,
:x2 623.8931884765625,
:y2 260.9309768676758,
:width 725.67,
:height 544.252}
{:x1 56.686195373535156,
:y1 269.28385162353516,
:x2 640.8726196289062,
:y2 293.4505081176758,
:width 725.67,
:height 544.252}
{:x1 56.686195373535156,
:y1 301.80338287353516,
:x2 286.65955352783203,
:y2 325.9700393676758,
:width 725.67,
:height 544.252}),
:page 35},
:content {:text "we can assert that if X is a random variable, then Y := g(X) = g(X(ω)), where g is a real-valued function defined on the real line, is a random variable as well"},
:properties {:color "yellow"}}],
:extra {:page 40}}