{:highlights [{:id #uuid "648c2a50-7acf-4cd5-b075-d0e970e114a4", :page 3, :position {:bounding {:x1 14.173179626464844, :y1 13.255218505859375, :x2 420.41524505615234, :y2 39.921875, :width 604.7249999999999, :height 453.54333333333324}, :rects ({:x1 14.173179626464844, :y1 13.255218505859375, :x2 420.41524505615234, :y2 39.921875, :width 604.7249999999999, :height 453.54333333333324}), :page 3}, :content {:text "The Definition of Distribution Function"}, :properties {:color "blue"}} {:id #uuid "648c2a73-3961-4723-90e8-5f160bb18e0d", :page 4, :position {:bounding {:x1 14.173179626464844, :y1 13.255218505859375, :x2 424.4708786010742, :y2 39.921875, :width 604.7249999999999, :height 453.54333333333324}, :rects ({:x1 14.173179626464844, :y1 13.255218505859375, :x2 424.4708786010742, :y2 39.921875, :width 604.7249999999999, :height 453.54333333333324}), :page 4}, :content {:text "The Properties of Distribution Function"}, :properties {:color "blue"}} {:id #uuid "648c2a88-3d0f-47d2-be44-21df002a1def", :page 4, :position {:bounding {:x1 43, :y1 79.4166259765625, :x2 685, :y2 357.4166259765625, :width 725.67, :height 544.252}, :rects (), :page 4}, :content {:text "[:span]", :image 1686907527770}, :properties {:color "yellow"}} {:id #uuid "648c2abf-5c5e-4af9-9e13-bb566f3206e8", :page 7, :position {:bounding {:x1 40, :y1 92.583251953125, :x2 690, :y2 316.583251953125, :width 725.67, :height 544.252}, :rects (), :page 7}, :content {:text "[:span]", :image 1686907580838}, :properties {:color "yellow"}} {:id #uuid "648c2b26-e92d-43f7-b8e1-60b51a2b5268", :page 9, :position {:bounding {:x1 41, :y1 107.91650390625, :x2 695, :y2 493.91650390625, :width 725.67, :height 544.252}, :rects (), :page 9}, :content {:text "[:span]", :image 1686907685844}, :properties {:color "yellow"}} {:id #uuid "648c2be0-787e-4e1f-8d0c-b859f0d08383", :page 17, :position {:bounding {:x1 0, :y1 92.68229675292969, :x2 669.0964965820312, :y2 342.2200469970703, :width 725.67, :height 544.252}, :rects ({:x1 0, :y1 92.68229675292969, :x2 0, :y2 115.18229675292969, :width 725.67, :height 544.252} {:x1 56.686195373535156, :y1 290.95701599121094, :x2 669.0964965820312, :y2 315.1237030029297, :width 725.67, :height 544.252} {:x1 56.686195373535156, :y1 318.0533905029297, :x2 621.4563980102539, :y2 342.2200469970703, :width 725.67, :height 544.252}), :page 17}, :content {:text "A random variable is said to be of discrete type if the number of different values it can take is finite or countably infinite."}, :properties {:color "yellow"}} {:id #uuid "648c2c54-b536-40ba-8191-ef1aeb2be0b9", :page 25, :position {:bounding {:x1 0, :y1 28.671875, :x2 669.1324462890625, :y2 235.19529724121094, :width 725.67, :height 544.252}, :rects ({:x1 0, :y1 28.671875, :x2 0, :y2 51.171875, :width 725.67, :height 544.252} {:x1 56.686195373535156, :y1 182.6822967529297, :x2 669.1324462890625, :y2 206.8489532470703, :width 725.67, :height 544.252} {:x1 56.686195373535156, :y1 209.7786407470703, :x2 619.7694091796875, :y2 235.19529724121094, :width 725.67, :height 544.252}), :page 25}, :content {:text "We call X a continuous random variable if there is a function f defined for all x ∈ R and having the following properties:"}, :properties {:color "yellow"}} {:id #uuid "648c2c9a-fcca-43e3-94a6-466f52131b48", :page 35, :position {:bounding {:x1 0, :y1 -3.3333282470703125, :x2 659.5091133117676, :y2 83.77604675292969, :width 725.67, :height 544.252}, :rects ({:x1 0, :y1 -3.3333282470703125, :x2 0, :y2 19.166671752929688, :width 725.67, :height 544.252} {:x1 17.005207061767578, :y1 15.826828002929688, :x2 659.5091133117676, :y2 47.91015625, :width 725.67, :height 544.252} {:x1 17.005207061767578, :y1 51.692718505859375, :x2 118.45283889770508, :y2 83.77604675292969, :width 725.67, :height 544.252}), :page 35}, :content {:text "The Distribution Function of Function of a Random Variable"}, :properties {:color "blue"}} {:id #uuid "648c2d05-82d4-472f-901c-b362852e2a3a", :page 35, :position {:bounding {:x1 0, :y1 44.674476623535156, :x2 641.643798828125, :y2 325.9700393676758, :width 725.67, :height 544.252}, :rects ({:x1 0, :y1 44.674476623535156, :x2 0, :y2 67.17447662353516, :width 725.67, :height 544.252} {:x1 0, :y1 60.67708110809326, :x2 0, :y2 83.17708110809326, :width 725.67, :height 544.252} {:x1 0, :y1 76.67968463897705, :x2 0, :y2 99.17968463897705, :width 725.67, :height 544.252} {:x1 508.04888916015625, :y1 204.24478912353516, :x2 641.643798828125, :y2 228.41144561767578, :width 725.67, :height 544.252} {:x1 56.686195373535156, :y1 236.76432037353516, :x2 623.8931884765625, :y2 260.9309768676758, :width 725.67, :height 544.252} {:x1 56.686195373535156, :y1 269.28385162353516, :x2 640.8726196289062, :y2 293.4505081176758, :width 725.67, :height 544.252} {:x1 56.686195373535156, :y1 301.80338287353516, :x2 286.65955352783203, :y2 325.9700393676758, :width 725.67, :height 544.252}), :page 35}, :content {:text "we can assert that if X is a random variable, then Y := g(X) = g(X(ω)), where g is a real-valued function defined on the real line, is a random variable as well"}, :properties {:color "yellow"}} {:id #uuid "648c2de1-d9a7-4760-bb4f-beec4b41102c", :page 40, :position {:bounding {:x1 45, :y1 128.166015625, :x2 689, :y2 503.166015625, :width 725.67, :height 544.252}, :rects (), :page 40}, :content {:text "[:span]", :image 1686908384666}, :properties {:color "yellow"}}], :extra {:page 40}}