Chapter 2 Random Variable

School of Sciences, BUPT

The elements of a sample space may take diverse forms: real numbers, brands of components, colors, "good" or "defective" and so on.

In this chapter we transform all the elementary outcomes into numerical values, by means of random variables.

[The Distribution Function of a Random Variable](#page-10-0)

The Definition of a Random Variable

Definition

A random variable is a function that assigns a real number to each outcome in the sample space.

Figure: Definition of random variable

In the experiment of tossing a coin, we could get the outcome "Head" or "Tail". Let "Head" $= 1$ and "Tail" $= 0$. Then we can get a random variable "X" defined on $\Omega = \{$ Head, Tail $\}$:

If we toss n coins, let Y be the total number of heads shown by the n coins. Clearly, Y is a random variable defined on $\Omega =$ $\{0, 1, 2, \cdots, n\}.$

Suppose that our experiment consists of tossing three fair coins. Let X denote the number of heads appearing. Then X is a random variable defined on

 $\Omega = \{TTT, TTH, THT, HTT, THH, HTH, HHT, HHH\}$

and it takes on one of the values 0, 1, 2 and 3. That is,

 $X(TTT) = 0,$ $X(TTH) = X(THT) = X(HTT) = 1,$ $X(THH) = X(HTH) = X(HHT) = 2, \quad X(HHH) = 3,$

Flip a fair coin until the rth head appears. Let X be the number of flips required. Then X is a random variable defined on $\Omega =$ $\{r, r+1, r+2, \dots\}$ and $X(n) = n, n = r, r+1, r+2, \dots$.

Example

Let (x) denote a life aged x, where $x \ge 0$. The death of (x) can occur at any age greater than x , and we model the future lifetime of (x) by T_x . This means that $x + T_x$ represents the age-at-death random variable for (x) . Then T_x is a random variable defined on $\Omega = [0, L - x)$, where L is the limiting age.

Suppose that our experiment consists of tossing two fair coins. Let X denote the number of heads appearing. Then X is a random variable taking on one of the values 0, 1, 2 with respective probabilities

$$
P(X = 0) = P(\omega | X(\omega) = 0) = P({TT}) = 1/4,
$$

\n
$$
P(X = 1) = P(\omega | X(\omega) = 1) = P({TH, HT}) = 2/4,
$$

\n
$$
P(X = 2) = P(\omega | X(\omega) = 2) = P({HH}) = 1/4.
$$

The Definition of Distribution Function

Now let us calculate the probability of $A = \{X \leq 1.5\}$

$$
P(A) = P(X \le 1.5) = P(X \in (\infty, 1.5])
$$

= $P(\omega | X(\omega) \le 1.5) = P(\lbrace TT, TH, HT \rbrace)$
= $P(\lbrace X = 0 \rbrace \cup \lbrace X = 1 \rbrace)$
= $P(X = 0) + P(X = 1) = 3/4.$

For
$$
A = (-\infty, x]
$$
,
\n
$$
P(X \le x) = P(X \in (-\infty, x]) = \sum_{x_k \le x} P(X = x_k)
$$

[The Distribution Function of a Random Variable](#page-10-0)

Definition

The function $F(x)$ that associates with each real number x the probability $P(X \leq x)$ that the random variable X takes on a value smaller than or equal to this number is called the **distribution** function of X. That is

$$
F(x) = P(X \leq x), \qquad \forall \ x \in \mathbb{R}.
$$
 (1)

The abbreviation for distribution function is d.f.. Some authors use the term *cumulative distribution function*, instead of distribution function, and use the abbreviation c.d.f..

Thank you for your patience !