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One Function of Two Random Variables

Given two random variables X and Y and a function ϕ(x, y),
we form a new random variable Z as

Z = ϕ(X,Y ).

Given the joint p.d.f. f(x, y) of X and Y , how does one obtain
the p.d.f. fZ(z) of Z?
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Discrete Case

Example

Assume the joint p.f. of random variable (X,Y ) is given by Table

HH
HHHHy

x
0 1 2 3 4 5

0 0 0.01 0.03 0.05 0.07 0.09

1 0.01 0.02 0.04 0.05 0.06 0.08

2 0.01 0.03 0.05 0.05 0.05 0.06

3 0.01 0.02 0.04 0.06 0.06 0.05

Determine the probability functions of (a) X+Y , (b) min(X,Y )
and (c) max(X,Y ).



Discrete Case

Solution. (a) The possible outcomes of X + Y are:
0, 1, 2, 3, 4, 5, 6, 7, 8. Then

P (X + Y = 0) = P (X = 0, Y = 0) = 0,

P (X + Y = 1) = P ({X = 0, Y = 1} ∪ {X = 1, Y = 0})
= P (X = 0, Y = 1) + P (X = 1, Y = 0)

= 0.01 + 0.01 = 0.02,

P (X + Y = 2) = P ({X = 0, Y = 2} ∪ {X = 1, Y = 1} ∪ {X = 2, Y = 0})
= P (X = 0, Y = 2) + P (X = 1, Y = 1) + P (X = 2, Y = 0)

= 0.03 + 0.02.+ 0.01 = 0.06.

Similarly, we can calculate other probabilities.

X + Y 0 1 2 3 4 5 6 7 8

P 0 0.02 0.06 0.13 0.19 0.24 0.19 0.12 0.05



Discrete Case

(b) The possible outcomes of min(X,Y ) are: 0, 1, 2, 3. Then

P (min(X,Y ) = 0)

= P
(
{X = 0, Y = 3} ∪ {X = 0, Y = 2} ∪ {X = 0, Y = 1}

∪ {X = 0, Y = 0} ∪ {X = 1, Y = 0} ∪ {X = 2, Y = 0}

∪ {X = 3, Y = 0} ∪ {X = 4, Y = 0} ∪ {X = 5, Y = 0}
)

= P (X = 0, Y = 3) + P (X = 0, Y = 2) + P (X = 0, Y = 1)

+ P (X = 0, Y = 0) + P (X = 1, Y = 0) + P (X = 2, Y = 0)

+ P (X = 3, Y = 0) + P (X = 4, Y = 0) + P (X = 5, Y = 0)

= 0.01 + 0.01 + 0.01 + 0 + 0.01 + 0.03 + 0.05 + 0.07 + 0.09 = 0.28.

Other probabilities can be calculated similarly.

min(X,Y ) 0 1 2 3

P 0.28 0.30 0.25 0.17



Discrete Case

(c) The possible outcomes of max(X,Y ) are: 0, 1, 2, 3, 4, 5. Then

P (max(X,Y ) = 0) = P ({X = 0, Y = 0}) = 0.

P (max(X,Y ) = 1)

= P ({X = 1, Y = 0} ∪ {X = 0, Y = 1} ∪ {X = 1, Y = 1})
= P (X = 1, Y = 0) + P (X = 1, Y = 1) + P (X = 1, Y = 0)

= 0.01 + 0.02 + 0.01 = 0.04.

Other probabilities can be calculated similarly.

max(X,Y ) 0 1 2 3 4 5

P 0 0.04 0.16 0.28 0.24 0.28



Discrete Case

It is often important to be able to calculate the distribution of
X + Y from the distributions of X and Y when X and Y are
independent.

Theorem

If X and Y are independent discrete random variables, then X+
Y has probability function

pX+Y (n) =
∑
k

pX(k)pY (n− k). (1)

The function pX+Y is called the convolution of pX and pY , and
is written as

pX+Y = pX ∗ pY .







Discrete Case

Example

Assume X and Y are independent, and X ∼ B(n1, p), Y ∼
B(n2, p). Prove X + Y ∼ B(n1 + n2, p).

Proof.

P (X + Y = k) =
∑
k1

P (X = k1)P (Y = k − k1)

=
k∑

k1=0

(
n1

k1

)
pk1(1− p)n1−k1 ·

(
n2

k − k1

)
pk−k1(1− p)n2−k+k1

= pk(1− p)n1+n2−k
k∑

k1=0

(
n1

k1

)
·

(
n2

k − k1

)

=

(
n1 + n2

k

)
pk(1− p)n1+n2−k, k = 0, 1, 2, · · · , n1 + n2.

Thus X + Y ∼ B(n1 + n2, p).



Discrete Case

Example

Assume X and Y are independent, and X ∼ P (λ), Y ∼ P (µ).
Prove X + Y ∼ P (λ+ µ).

Solution. X + Y has the following probability function:

P (X + Y = n) =

n∑
k=0

P (X = k, Y = n− k) =

n∑
k=0

P (X = k)P (Y = n− k)

=
n∑
k=0

e−λ
λk

k!
e−µ

µn−k

(n− k)!
= e−(λ+µ)

n∑
k=0

λkµn−k

k!(n− k)!

=
e−(λ+µ)

n!

n∑
k=0

n!

k!(n− k)!
λkµn−k

=
e−(λ+µ)

n!
(λ+ µ)n

Thus, X + Y has a Poisson distribution with parameter
λ+ µ.



Distribution Functions of Multiple Random Vectors

Proposition

(i) If X1, X2, · · · , Xm are independent and Xi has a Bernoulli
distribution with parameter p, for i = 1, 2, · · · , n, then we have:

n∑
i=1

Xi ∼ B(n, p), for n = 1, 2, · · ·

More generally, if X1, X2, · · · , Xm are independent, and Xi ∼
B(ni, p), i = 1, 2, · · · ,m. Then X1 + X2 + · · · + Xm ∼ B(n1 +
n2 + · · ·+ nm, p).

(ii) Assume X1, X2, · · · , Xn are independent, and Xi ∼ P (λi),
i = 1, 2, · · · , n. Then X1 +X2 + · · ·+Xn ∼ P (λ1 + · · ·+ λn).
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Continuous Case

Let X and Y be random variables having joint p.d.f. f(x, y).
Let Z be given by Z = ϕ(X,Y ), where ϕ is a real-valued
function whose domain contains the range of X and Y .

In order to determine the p.d.f. of Z, we need to find the d.f. of
Z first. Thus

FZ(z) =P (Z 6 z) = P (ϕ(X,Y ) 6 z)

=P ((X,Y ) ∈ Az) =

∫∫
Az

f(x, y)dxdy,

where
Az = {(x, y)|ϕ(x, y) 6 z}.

Thus fZ(z) = F ′(z).



Continuous Case

In this section, we mainly concern the cases when
ϕ(X,Y ) = X + Y , min(X,Y ) and max(X,Y ).

1. The case of X + Y

Set Z = X + Y . Then

Az = {(x, y)|x+ y 6 z}

is just the half-plane to the lower left of the line x+ y = z. Thus

FZ(z) =

∫∫
Az

f(x, y)dxdy =

∫ ∞
−∞

(∫ z−x

−∞
f(x, y)dy

)
dx.

Make the change of variable y = v − x in the inner integral.
Then



Continuous Case

FZ(z) =

∫ ∞
−∞

(∫ z

−∞
f(x, v − x)dv

)
dx

=

∫ z

−∞

(∫ ∞
−∞

f(x, v − x)dx
)
dv,

where we have interchanged the order of integration. Thus the
density of Z = X + Y is given by

fZ(z) = fX+Y (z) = F ′(z) =

∫ ∞
−∞

f(x, z−x)dx, −∞ < z <∞.

(2)
If X and Y are independent, then equation (2) can be rewritten
as

fX+Y (z) =

∫ ∞
−∞

fX(x)fY (z − x)dx, −∞ < z <∞. (3)







Continuous Case

That means the density of the sum of two independent random
variables is the convolution of the individual densities.
Equation (3) can be written as

fX+Y = fX ∗ fY .



Continuous Case

Example

Let X and Y be two independent random variables, uniformly
distributed in the same interval [0, 1]. Compute the distribution
of X + Y, and compare with the distribution of 2X.

Solution. The density of X is

fX(x) =

{
1 if x ∈ (0, 1),

0 otherwise.

The density of Y is the same. Thus fX+Y (z) = 0 for z 6 0. For
z > 0,

fX(x)fY (z − x) =

{
1 if 0 6 x 6 1, 0 6 z − x 6 1,

0 otherwise.





Continuous Case

If 0 6 z 6 1, then

fX+Y (z) =

∫ +∞

−∞
fX(x)fY (z − x)dx =

∫ z

0
1dx = z.

If 1 < z 6 2, then

fX+Y (z) =

∫ +∞

−∞
fX(x)fY (z − x)dx =

∫ 1

z−1
1dx = 2− z.

If 2 < z <∞, then

fX+Y (z) =

∫ +∞

−∞
fX(x)fY (z − x)dx =

∫ z

0
0dx = 0.





Continuous Case

In summary,

fX+Y (z) =


z if 0 6 z 6 1,

2− z if 1 < z 6 2,

0 elsewhere.

But, obviously,

f2X(z) =

{
1/2 if z ∈ (0, 2),

0 otherwise.

It is because X and Y are independent, but X and X are
not.



Continuous Case

Example

Let X and Y be independent random variables, which have ex-
ponential distributions with parameter λ1 and λ2 respectively.
Find the distribution of X + Y .

Solution. Let the distributions of X and Y be respectively

fX(x) =

{
λ1e
−λ1x for x > 0,

0 for x < 0,
and fY (y) =

{
λ2e
−λ2y for y > 0,

0 for y < 0.

For z 6 0, we have fX+Y (z) = 0. For z > 0,

fX+Y (z) =

∫ z

0

λ1e
−λ1xλ2e

−λ2(z−x)dx

= λ1λ2e
−λ2z

∫ z

0

e(−λ1+λ2)xdx

=
λ1λ2

λ2 − λ1
(e−λ1z − e−λ2z).



Continuous Case

Example

Let X and Y be independent random variables having the re-
spective normal densities N(µ1, σ

2
1) and N(µ2, σ

2
2). Prove X +Y

has the normal distribution N(µ1 + µ2, σ
2
1 + σ22).

Corralary

If X ∼ N(µ1, σ
2
1), Y ∼ (µ2, σ

2
2) and X⊥Y , then

aX + bY + c ∼ N(aµ1 + bµ2 + c, a2σ21 + b2σ22),

where a, b are constants.













Continuous Case

Corralary

Assume X1, X2, · · · , Xn are independent, and Xi ∼ N(µi, σ
2
i ),

for i = 1, · · · , n, then
n∑
i=1

aiXi ∼ N
( n∑
i=1

aiµi,

n∑
i=1

a2iσ
2
i

)
.



Continuous Case

By using similar ways of finding the p.d.f. of X + Y , we can
obtain the probability density functions of X − Y , X · Y and
X/Y .

(1) Let Z = X − Y . Then the p.d.f. of Z is

fZ(z) =

∫ +∞

−∞
f(x, x− z)dx =

∫ +∞

−∞
f(z + y, y)dy.

If X and Y are independent, then

fZ(z) =

∫ +∞

−∞
fX(x)fY (x− z)dx =

∫ +∞

−∞
fX(z + y)fY (y)dy.



Continuous Case

(2) Let Z = X · Y . Then

fZ(z) =

∫ +∞

−∞
f(x, z/x)

1

|x|
dx =

∫ +∞

−∞
f(z/y, y)

1

|y|
dy.

If X and Y are independent, then

fZ(z) =

∫ +∞

−∞
fX(x)fY (z/x)

1

|x|
dx =

∫ +∞

−∞
fX(z/y)fY (y)

1

|y|
dy.



Continuous Case

(3) Let Z = X/Y . Then

fZ(z) =

∫ +∞

−∞
f(x, x/z)

|x|
z2
dx =

∫ +∞

−∞
f(yz, y)|y|dy.

If X and Y are independent, then

fZ(z) =

∫ +∞

−∞
fX(x)fY (x/z)

|x|
z2
dx =

∫ +∞

−∞
fX(yz)fY (y)|y|dy.



Continuous Case

2. The case of max(X,Y)

Set

Z = max(X,Y ) =

{
X for X > Y,

Y for X 6 Y.

We have

FZ(z) = P (max(X,Y ) 6 z)

= P (X 6 z, Y 6 z)

= F (z, z).







Continuous Case

FZ(z) = P (X 6 z, Y 6 z) = F (z, z).

If X and Y are independent, then

FZ(z) = P (X 6 z)P (Y 6 z) = FX(z)FY (z) (4)

and hence

fZ(z) = FX(z)fY (z) + fX(z)FY (z). (5)



Continuous Case

If X and Y are independent and have identical distribution
function F and probability density function f , then equation
(4) becomes

FZ(z) = [F (z)]2. (6)

Equation (5) becomes

fZ(z) = 2F (z)f(z). (7)



Continuous Case

3. The case of min(X,Y)

Set

W = min(X,Y ) =

{
Y for X > Y,

X for X 6 Y.

Thus,

FW (w) = P (min(X,Y ) 6 w)

= P ({Y 6 w,X > Y } ∪ {X 6 w,X 6 Y }).



Continuous Case

Since the event {min(X,Y ) 6 w} contains many cases, we
consider its complement. Thus

FW (w) = 1− P (min(X,Y ) > w) = 1− P (X > w, Y > w)

= FX(w) + FY (w)− FX,Y (w,w).

If X and Y are independent, then

FW (w) = 1− P (X > w)P (Y > w) = 1− [1− FX(w)][1− FY (w)].
(8)

If X and Y are independent and have the same distribution
function F and probability density function f , then

FW (w) = 1− [1− F (w)]2.

And
fW (w) = F

′
W (w) = 2[1− F (w)]f(w). (9)



Continuous Case

Example

Suppose that X1 ∼ Exp(α), X2 ∼ Exp(β) and X1⊥X2. Let Z =
max(X,Y ) and W = min(X,Y ). Determine the distributions of
Z and W .

Solution. Since X1 ∼ Exp(α) and X2 ∼ Exp(β),

FX(x) =

{
1− e−αx for x > 0,

0 for x 6 0
and FY (y) =

{
1− e−βy for y > 0,

0 for y 6 0.

By using equation (4), we get

FZ(z) = FX(z)FY (z) =

{
(1− e−αz)(1− e−βz) for z > 0,

0 for z 6 0



Continuous Case

and hence

fZ(z) =

{
αe−αz + βe−βz − (α+ β)e−(α+β)z for z > 0,

0 for z 6 0.

By using equation (8), we can obtain

FW (w) = 1−[1−FX(w)][1−FY (w)] =

{
1− e−(α+β)w for w > 0,

0 for w 6 0,

and hence

fW (w) =

{
(α+ β)e−(α+β)w for w > 0,

0 for w 6 0.

i.e., W ∼ Exp(α+ β).



The end

Thank you for your
patience !
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