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The Definition of Conditional Probability

Let us consider a easier problem.

Suppose that we flip two fair coins and that each of the 4
possible outcomes is equally likely to occur and hence has the
probability 1/4. Suppose that we observe that a head appears
on the flip of one coin. Then given this information, what is the
probability that (H,H) occurs? To calculate this probability we
reason as follows:



The Definition of Conditional Probability

Given that a head appears, it follows that there can be three

outcomes (H,H), (H,T ) and (T,H).

Since each of these outcomes originally had the same proba-

bility of occurring, they should still have equal probabilities.

In fact, this probability can be calculated as follows.

Let A = {(H,H)} and B = { a head appears on the flip of one

coin}.

P (A|B) =
1

3
=

#{(H,H)}
#{(H,H), (H,T ), (T,H)}

=
#AB

#B
=

#AB
#S

#B
#S

=
P (AB)

P (B)
.



The Definition of Conditional Probability

Definition

Given two events A and B with P (B) > 0, the conditional
probability of A given B is defined as the quotient of the joint
probability of A and B, and the probability of B:

P (A|B) =
P (AB)

P (B)
(1)

Theorem

If P (B) > 0, then the conditional probability P (A|B) is also a
probability, that is,
(i) for every event A,P (A|B) > 0;
(ii) P (Ω|B) = 1;











The Definition of Conditional Probability

Theorem

(iii) for every infinite sequence of countable disjoint events
A1, A2, · · · ,

P
( ∞⋃
i=1

Ai

∣∣∣B) =

∞∑
i=1

P (Ai|B).

Proof. (i) Since P (B) > P (AB) and P (B) > 0, we get
P (A|B) > 0 by equation (1).

(ii) P (Ω|B) = P (ΩB)
P (B) = P (B)

P (B) = 1.

(iii) P
( ∞⋃
i=1

Ai

∣∣∣B) =
(
P
( ∞⋃
i=1

AiB
))/

P (B) =
∞∑
i=1

P (AiB)
P (B) =

∞∑
i=1

P (Ai|B).



The Definition of Conditional Probability

Since the conditional probability is a probability, all properties
of probabilities hold for conditional probabilities.

Property

If P (B) > 0, then
(1) P (∅|B) = 0.
(2) For every finite sequence of countable disjoint events
A1, A2, · · · , An,

P
( n⋃
i=1

Ai

∣∣∣B) =

n∑
i=1

P (Ai|B).

(3) P (A|B) = 1− P (A|B).
(4) If A ⊂ C, then P (C − A|B) = P (C|B) − P (A|B) and
P (A|B) 6 P (C|B).
(5) P (A ∪ C|B) = P (A|B) + P (C|B)− P (AC|B).





The Definition of Conditional Probability

Example

A machine produces parts that are either good (90%), slightly
defective (2%), or obviously defective (8%). Produced parts get
passed through an automatic inspection machine, which is able to
detect any part that is obviously defective and discard it. What
is the quality of the parts that make it through the inspection
machine and get shipped?

Solution. Let A (resp., B,C) be the event that a randomly
chosen shipped part is good (resp., slightly defective, obviously
defective).

We are told that P (A) = 0.90, P (B) = 0.02, and P (C) = 0.08.



The Definition of Conditional Probability

Solution. Let A (resp., B,C) be the event that a randomly
chosen shipped part is good (resp., slightly defective, obviously
defective).

We are told that P (A) = 0.90, P (B) = 0.02, and P (C) = 0.08.

We want to compute the probability that a part is good given
that it passed the inspection machine (i.e., it is not obviously
defective), which is

P (A|C) =
P (AC)

P (C)
=

P (A)

1− P (C)
=

0.90

1− 0.08
= 90/92 = 0.978.



The Definition of Conditional Probability

Example

Ten fair dice are rolled at one time. What is the conditional
probability of the event at least two land on 1 given the event at
least one of the dice lands on 1.

Solution. Let A be the event that at least one of the dice
lands on 1, B be the event that at least two land on 1, and C
be the event that exactly one of the dice lands on 1.
We see that B ⊂ A,C ⊂ A and B = A− C. By using the
definition of classical probability,

P (A) = 1− P (A) = 1− 510

610
, P (C) =

10× 59

610
.



The Definition of Conditional Probability

So the required probability is

P (B|A) =
P (AB)

P (A)
=

P (B)

P (A)
=

P (A)− P (C)

P (A)

=
1− 510

610
− 10× 59

610

1− 510

610

≈ 0.615.



The Definition of Conditional Probability

Example

In describing the survival rate and life expectancy in a certain
population, let AN denote the event of a new-born to reach the
age of N years. We are given that

P (A50) = 0.913, P (A55) = 0.881, P (A65) = 0.746.

(a) What is the probability of a 50 years old man to reach the
age of 55, i.e., what is P (A55|A50)?
(b) If the probability that a man who just turned 65 will die
within 5 years is 0.16, what is the probability for a man to survive
till his 70th birthday, i.e., what is P (A70)?



The Definition of Conditional Probability

Solution. (a) Obviously, A55 ∩A50 = A55. We have by
definition,

P (A55|A50) = P (A55 ∩A50)/P (A50) = P (A55)/P (A50) ≈ 0.965.

(b) Similarly, P (A70|A65) = P (A70)/P (A65). So
P (A70) = P (A65) · P (A70|A65). We get

P (A70|A65) = 1− 0.16 = 0.84.

Therefore,
P (A70) = P (A65) · P (A70|A65) = 0.746 · 0.84 ≈ 0.627.
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The Multiplication Rule

The additivity of probability in Section 1.4 helped us to
calculate the probabilities of the events that at least one of the
events occurs.

How to deal with the probability of the events that many events
occur at one time?

The multiplication rule (also known as the “Law of
Multiplication”).

In a sense, the multiplication rule could be regarded as a
perfect mathematical reflection of the Chinese phrase “proceed
in an orderly way and step by step”.



The Multiplication Rule

Theorem

Assume that P (B) > 0. Then

P (AB) = P (B) · P (A|B). (2)

Or if P (A) > 0, then

P (AB) = P (A) · P (B|A). (3)

Theorem

Suppose that A1, A2, · · · , An are events satisfying
P (A1A2 · · ·An−1) > 0. Then

P (A1A2 · · ·An)

=P (A1)P (A2|A1)P (A3|A1A2) · · ·P (An|A1A2 · · ·An−1).







The Multiplication Rule

Example

(Polya urn mode) Suppose that an urn contains r red balls and
b blue balls (r > 2, b > 2). Suppose that one ball is drawn ran-
domly from the urn and its color is observed; it is then replaced
in the urn, and c additional balls of the same color is added to the
urn, and the selection process is repeated four times. We shall
determine the probability of obtaining the sequence of outcomes
red, blue, red, blue.

Solution. Let Rj denote the event that a red ball is obtained
on the jth draw and Bj the event that a blue ball is obtained
on the jth draw (j = 1, 2, 3, 4). Then

P (R1B2R3B4) = P (R1)P (B2|R1)P (R3|R1B2)P (B4|R1B2R3)

=
r

r + b
· b

r + b + c
· r + c

r + b + 2c
· b + c

r + b + 3c
.



The Multiplication Rule

Theorem

Suppose that A1, A2, · · · , An, B are events such that
P (A1A2 · · ·An−1|B) > 0. Then

P (A1A2 · · ·An|B) =P (A1|B)P (A2|A1B)P (A3|A1A2B) · · ·
P (An|A1A2 · · ·An−1B).

Theoretically speaking, the multiplication rule holds no matter
which one of these events happens first. But in actual
applications, we usually use the multiplication rule in the
situation that the events occur successively.
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Total Probability Formula

Assume that A is the event caused by B1, B2, · · · , Bn. The
“Law of Total Probability” allows us to compute the probability
of an event A by conditioning on cases, according to a partition
B1, B2, · · · , Bn of the sample space.

Definition

Let Ω denote the sample space of some experiment. n events
B1, B2, · · · , Bn are said to form a partition of Ω if these events
satisfy:
(i) B1, B2, · · · , Bn are disjoint and

(ii)

n⋃
i=1

Bi = Ω.



Total Probability Formula

One way to partition Ω is to break it into sets B and B , for
any event B. Thus for event A, we have

P (A) = P (AΩ) = P (A ∩ (B ∪B)) = P (AB ∪AB)

= P (AB) + P (AB) = P (B) · P (A|B) + P (B) · P (A|B)

It is the simplest form of the law of total probability. More
generally,

Theorem

Suppose that the events B1, B2, · · · , Bn form a partition of the
sample space Ω and P (Bi) > 0 for i = 1, 2, · · · , n. Then, for
every event A in Ω,

P (A) =
n∑

i=1

P (Bi)P (A|Bi). (4)



Total Probability Formula

Example

Two cards from an ordinary deck of 52 cards are missing. What
is the probability that a random card drawn from this deck is a
spade?

Solution. Let A be the event that the randomly drawn card
is a spade. Let Bi be the event that i spades are missing from
the 50-card (defective) deck, for i = 0, 1, 2.
By conditioning on how many spades are missing from the
original (good) deck, we get

P (A) = P (B0)P (A|B0) + P (B1)P (A|B1) + P (B2)P (A|B2)

=
13

50

(
13
0

)(
39
2

)(
52
2

) +
12

50

(
13
1

)(
39
1

)(
52
2

) +
11

50

(
13
2

)(
39
0

)(
52
2

) ≈ 1

4
.



Total Probability Formula

How to ask a sensitive question?

What proportion of people use illegal drugs?

How many students ever cheated on an exam?

...

Surveying people directly and asking these types of sensitive
questions are not likely to get honest responses and useful data.

Using probabilistic methods, statisticians have developed
interesting ways, total probability methods, to ask sensitive
questions that protect confidentiality.



Total Probability Formula

Example

Respondents are given a coin and told to flip it in private, not

letting anyone see the outcome. If it lands heads, they answer

the sensitive question of interest (e.g. “Have you ever taken il-

legal drugs?”). If tails, they answer an innocuous question such

as “Were you born in the first half of the year?” The respondent

reports a yes or no, but does not say which question they ac-

tually answered. From a sample of such yes-no responses, how

can statisticians estimate the parameter of interest, such as the

proportion of people who have ever taken illegal drugs?



Total Probability Formula

Solution. Let Y and N denote responses of yes and no,
respectively. Let A denote the sensitive question and B the
innocuous question. The unknown parameter that surveyors
want to estimate is p = P (Y |A), the probability that someone
answers yes given that they were asked the sensitive question.
We assume that the innocuous question is (i) easy to answer and
(ii) has a known probability of yes and no, in this case 0.5 each.

Consider the unconditional probability P (Y ). By the law of
total probability,

P (Y ) = P (Y |A)P (A) + P (Y |B)P (B)

= p · 1

2
+

1

2
· 1

2

=
p

2
+

1

4
.



Total Probability Formula

Solution. When this survey is given to n people, the finial
data will consist of n yes’s and no’s. The proportion of yes’s is a
simulated estimate of the unknown P (Y ). And thus

p

2
+

1

4
= P (Y ) ≈ Numbers of yes′s in the sample

n
.

Solving for p gives

p ≈ 2

(
Numbers of yes′s in the sample

n
− 1

4

)
,

which is the final estimate of the parameter of interest.
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Bayes’ Theorem

Suppose that someone told you they had a nice conversation
with someone on the train. Not knowing anything else about
this conversation, the probability that they were speaking to a
woman is 50%. Now suppose that they also told you that this
person had long hair. It is now more likely they were speaking
to a woman, since women are more likely to have long hair than
men. The following result, which is known as Bayes’ theorem,
can be used to calculate the probability that the person is a
woman.



Bayes’ Theorem

Theorem

(Bayes’ Theorem) Let the events B1, B2, · · · , Bn form a parti-
tion of the sample space Ω such that P (Bi) > 0 for i = 1, 2, · · · , n,
and let A be an event such that P (A) > 0. Then, for i =
1, 2, · · · , n,

P (Bi|A) =
P (Bi)P (A|Bi)

n∑
j=1

P (Bj)P (A|Bj)

(5)

Proof. By the definition of conditional probability,

P (Bi|A) =
P (BiA)

P (A)
. By the multiplication rule for conditional

probabilities, equation (2), P (BiA) = P (Bi)P (A|Bi). Thus

P (A) =
n∑

j=1
P (Bj)P (A|Bj). The equation 5 holds.





Bayes’ Theorem

Example

A new test has been devised for detecting a particular type of
cancer. If the test is applied to a person who has this type of
cancer, the probability that the person will have a positive re-
action is 0.95 and the probability that the person will have a
negative reaction is 0.05. If the test is applied to a person who
does not have this type of cancer, the probability that the person
will have a positive reaction is 0.05 and the probability that the
person will have a negative reaction is 0.95. Suppose that in the
general population, one person out of every 100,000 people has
this type of cancer. If a person selected at random has a positive
reaction to the test, what is the probability that he has this type
of cancer?



Bayes’ Theorem

Solution. Let A denote the event that a person has a
positive reaction to the test, B1 denote the event that he has
this type of cancer and B2 denote the event that he does not
have this type of cancer. Now we have known that P (A|B1) =
0.95, P (A|B1) = 0.05, P (A|B2) = 0.05, P (A|B2) = 0.95 and
P (B1) = 1/100000. It now follows from Bayes’ theorem that

P (B1|A) =
P (B1)P (A|B1)

P (B1)P (A|B1) + P (B2)P (A|B2)

=
(1/100000) · (0.95)

(1/100000) · (0.95) + (99999/100000) · (0.05)
≈ 0.00019.



Bayes’ Theorem

It seems impossible! The result is contrary to our common
sense. So in practical applications, doctors generally increased
the probability P (B1) through some other medical examinations
in advance to increase the accuracy of the test. For example, if
P (B1) = 0.2, then P (B1|A) ≈ 0.83. This example illustrates not
only the use of Bayes’ theorem, but also the importance of
taking into account all of the information available in a problem.



Bayes’ Theorem

Example

Three different machines M1,M2 and M3 were used for producing
a large batch of similar manufactured items. Suppose that 20
percent of the items were produced by machine M1, 30 percent
of the items were produced by machine M2, and 50 percent of
the items were produced by machine M3. Suppose further that 1
percent of the items produced by machine M1 are defective, that
2 percent of the items produced by machine M2 are defective, and
that 3 percent of the items produced by machine M3 are defective.
Finally, suppose that one item is selected at random from the
entire batch, and it is found to be defective. We shall determine
the probability that this item was produced by machine Mi(i =
1, 2, 3).



Bayes’ Theorem

Solution. Let Bi be the event that the selected item was
produced by machine Mi(i = 1, 2, 3), and let A be the event
that the selected item is defective. We must evaluate the
conditinal probability P (B2|A). The probability
P (Bi)(i = 1, 2, 3) is as follows:

P (B1) = 0.2, P (B2) = 0.3, P (B3) = 0.5.

Furthermore, the probability P (A|Bi) that an item produced by
machine Mi will be defective is:
P (A|B1) = 0.01, P (A|B2) = 0.02, P (A|B3) = 0.03. It now
follows from Bayes’ theorem that

P (B1|A) =
P (B1)P (A|B1)

P (B1)P (A|B1) + P (B2)P (A|B2) + P (B3)P (A|B3)

=
(0.2)(0.1)

(0.2)(0.1) + (0.3)(0.02) + (0.5)(0.03)
= 0.087.

By the similar way, we obtain
P (B2|A) = 0.261, P (B3|A) = 0.652.



Bayes’ Theorem

Remark

(i) A probability like P (Bi) is called the prior probability that
the selected item will have been produced by machine Mi, because
P (Bi) is the probability of this event before the item is selected
and before it is known whether the selected item is defective or
nondefective.

A probability like P (Bi|A) is called the posterior probability
that the selected item was produced by machine Mi, because it
is the probability of this event after it is known that the selected
item is defective.



Bayes’ Theorem

Remark

(ii) From above example, we can observe that

P (B1) = 0.2 > P (B1|A) = 0.087,

P (B3) = 0.5 < P (B3|A) = 0.652.

That means there is no stationary numerical relationship between
prior probability and posterior probability.



Application of Conditional Probability

Ask Marilyn

Figure: The Monty Hall problem

What would you do?
The critical factor in this problem is that the host knows what
is behind the doors in advance.



Summary

Conditional Probability
P (B|A) = P (AB)/P (A).

The multiplicational rule
P (AB) = P (A)P (B|A).

Total probability formula
P (A) =

∑n
i=1 P (Bi)P (A|Bi).

Bayes’ Theorem

P (Bi|A) =
P (Bi)P (A|Bi)

n∑
j=1

P (Bj)P (A|Bj)

where the events B1, B2, · · · , Bn form a partition of the sam-
ple space Ω such that P (Bi) > 0 for i = 1, 2, · · · , n.





Exercises

1.If A and B are two events such that P (A) = 0.5, P (B) = 0.6
and P (B|A) = 0.4, then P (B|A) =?



The end

Thank you for your
patience !
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