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Expectation of a Random Variable

The distribution of a random variable X contains all of the
probabilistic information about X.

But it is difficult to get the d.f. of the random variable.

Without trying to describe the entire distribution, How could
we obtain useful information of r.v.?

In this section, we mainly introduce two measures: the
expectation and the variance.



Expectation of a Random Variable

n = 100 n = 10000
Winning Frequency Relative Frequency Relative

Frequency Frequency
1 17 0.17 1681 0.1681
-2 17 0.17 1678 0.1678
3 16 0.16 1626 0.1626
-4 18 0.18 1696 0.1696
5 16 0.16 1686 0.1686
-6 16 0.16 1633 0.1633

Table: Frequencies for dice game



Expectation of a Random Variable

In the first run, we have played the game 100 times.

average gain = 1 · F100(1) + (−2) · F100(−2) + 3 · F100(3)

+ (−4) · F100(−4) + 5 · F100(5) + (−6) · F100(−6)

= − 0.57

To get a better idea, we have played the game 10,000 times.

average gain = 1 · F10000(1) + (−2) · F10000(−2) + 3 · F10000(3)

+ (−4) · F10000(−4) + 5 · F10000(5) + (−6) · F10000(−6)

= 1 · 0.1681− 2 · 0.1678 + 3 · 0.1626

− 4 · 0.1696 + 5 · 0.1686− 6 · 0.1633

= − 0.4949

1 ·p(1)−2 ·p(−2)+3 ·p(3)−4 ·p(−4)+5 ·p(5)−6 ·p(−6) = −0.5.



Expectation of a Random Variable

Definition

The expectation (the mean or the expected value) of a ran-
dom variable X is given by

µ := E(X) =



∞∑
i=1

xip(xi) if X is discrete,

∫ ∞
−∞

xf(x)dx if X is continuous.

(1)

In words, the expected value of X is a weighted average of the
possible values that X can take on, each value being weighted
by the probability that X assumes it.







Expectation of a Random Variable

However, the idea of adding the value times the probability to
find the expectation does not quite work for continuous random
variables.

Why?

By returning to the Riemann sum approach, we will find the
continuous case of equation (1) in Definition is reasonable.



Expectation of a Random Variable

( ) ( )

Figure: From discrete to continuous

n−1∑
i=0

xif(xi)4x→
∫ ∞
−∞

xf(x)dx, n→∞ and 4x→ 0



Expectation of a Random Variable

Example

Find E(X), where the p.f. of X is p(0) = 0.1 and p(1) = 0.9.

Solution. Since p(0) = 0.1 and p(1) = 0.9, we obtain

E(X) = 0 · 0.1 + 1 · 0.9 = 0.9.

Remark

The probability concept of expectation is analogous to the physical
concept of the center of gravity of a distribution of a mass.



Expectation of a Random Variable

Example

Suppose that you plan on starting a new business and would like
to know the expected return for the business. You develop a
subjective probability distribution of the returns and their asso-
ciated probabilities. Note: X=return in $1,000/year (e.g., −10
means a loss of $10,000).

x −10 0 10 20

p(x) 0.20 0.25 0.40 0.15

What is the expected return for this business?



Expectation of a Random Variable

Solution.

E(X) =
∑

x · p(x)

= x1P (x1) + x2P (x2) + x3P (x3) + x4P (x4)

=− 10 · (0.2) + 0 · (0.25) + 10 · (0.4) + 20 · (0.15)

=− 2 + 0 + 4 + 3 = 5.

The expected return for this business is $5,000.



Expectation of a Random Variable

Example

Suppose that we flip a fair coin until a head first appears, and if
the number of tosses equals n, then we are paid 2n dollars. What
is the expected value of the payment?

Solution. We let Y represent the payment. Then,

P (Y = 2n) =
1

2n

for n > 1. Thus,

E(Y ) =

∞∑
n=1

2n · 1

2n

which is a divergent sum. Thus, Y has no expectation.

St. Petersburg Paradox.



Expectation of a Random Variable

The expectation E(X) exists if and only if the summation in
equation (1) is absolutely convergent, that is,∑

all x

|x|p(x) <∞ or

∫
x
|x|f(x)dx <∞. (2)

Thus, we know if relation (2) is satisfied, then E(X) exists and
its value is given by equation (1).

If relation (2) is not satisfied, then E(X) does not exists.



Expectation of a Random Variable

Now let us see some examples of continuous case.

Example

Suppose that the p.d.f. of a random variable X is

f(x) =

cx for 0 < x < 4,

0 otherwise,

where c is a given constant. Determine the value of c and the
expected value of X.



Expectation of a Random Variable

Solution. For every p.d.f., it must be true that∫ +∞
−∞ f(x)dx = 1. Therefore, in this example,∫ 4

0
cxdx = 8c = 1.

Hence, c = 1/8. It follows that

E(X) =

∫ 4

0
x · 1

8
xdx =

8

3
.



Expectation of a Random Variable

Example

Suppose that the d.f. of a random variable X is as follows:

F (x) =

e
x−3 for x 6 3,

1 for x > 3.

Determine the expected value of X.

Solution. Of course we can find the p.d.f. of X from d.f.,
then E(X) can be obtained by using the formula in Definition.
But another way is using d.f. directly to get E(X).

E(X) =

∫ +∞

−∞
xdF (x) =

∫ 3

−∞
xdex−3

= xex−3
∣∣∣3
−∞
− ex−3

∣∣∣3
−∞

= 3− 1 = 2.



Expectation of a Random Variable

Example

Suppose that X is a continuous random variable and the p.d.f of
X is

f(x) =
1

π

1

1 + x2
, −∞ < x <∞.

This distribution is called the Cauchy distribution. E(X) does
not exist since∫ ∞
−∞
|x|f(x)dx = 2

∫ ∞
0

1

π

x

1 + x2
dx =

1

π
ln(1 + x2)

∣∣∣∞
0

diverges.
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Expectation of Functions of a Random Variable

How can we compute the expected value of g(X),

some function of X?



Expectation of Functions of a Random Variable

In fact, we can compute E[g(X)] by the following easier way.

Proposition

The mathematical expectation of a function g(X) of a random
variable X can be calculated by

E[g(X)] =



∞∑
i=1

g(xi)p(xi) if X is discrete,

∫ ∞
−∞

g(x)f(x)dx if X is continuous.

(3)

The expectation E[g(X)] will exist if and only if∫ ∞
−∞
|g(x)|f(x)dx <∞.





Expectation of Functions of a Random Variable

Example

Let X denote a random variable that takes on any of the values
−1, 0, and 1 with respective probabilities

P (X = −1) = 0.2 P (X = 0) = 0.5 P (X = 1) = 0.3

Compute E(X2).

Solution. Let Y = X2. Then the probability mass function
of Y is given by

P (Y = 1) = P (X = −1) + P (X = 1) = 0.5

P (Y = 0) = P (X = 0) = 0.5.

Hence, E(Y ) = E(X2) = 1 · 0.5 + 0 · 0.5 = 0.5.

E(Y ) = E(X2) = (−1)2 · 0.2 + 0 · 0.5 + 12 · 0.3 = 0.5.



Expectation of Functions of a Random Variable

Proof of Proposition As in the preceding verification, we will
group together all the terms in

∑
i g(xi)p(xi) having the same

value of g(xi). Specifically, suppose that yj , j > 1, represent the
different values of g(xi), i > 1. Then, grouping all the g(xi)
having the same value gives∑

i

g(xi)p(xi) =
∑
j

∑
i:g(xi)=yj

g(xi)p(xi)

=
∑
j

∑
i:g(xi)=yj

yjp(xi)

=
∑
j

yj
∑

i:g(xi)=yj

p(xi)

=
∑
j

yjP (g(X) = yj)

= E(g(X)).



Expectation of Functions of a Random Variable

Example

Let X be a continuous nonnegative random variable with density
function

fX(x) =

{x
8

for 0 < x < 4,

0 otherwise.

and let Y = 2X + 1. Compute E(Y ).

Solution. We have known the p.d.f. of Y . So

E(Y ) =

∫ +∞

−∞
yfY (y)dy =

∫ 9

1
y · y − 1

32
dy =

19

3
.

E(Y ) = E(2X+1) =

∫ +∞

−∞
(2x+1)f(x)dx =

∫ 4

0
(2x+1)·x

8
dx =

19

3
.
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Properties of Expectation of a Random Variable

Proposition

(i) E(c) = c, for any constant c.
(ii) If there exists a constant such that P (X > a) = 1, then
E(X) > a. If there exists a constant such that P (X 6 b) = 1,
then E(X) 6 b.

From Proposition, we can get

Corralary

(i) If P (a 6 X 6 b) = 1, then a 6 E(X) 6 b.

(ii) If P (X > a) = 1 and E(X) = a, then it must be true that
P (X > a) = 0 and P (X = a) = 1.





Properties of Expectation of a Random Variable

Proposition

For all constants a and b, we have

E(aX + b) = aE(X) + b. (4)







Properties of Expectation of a Random Variable

Example

Suppose that the p.d.f. of V is

f(v) =


1

a
for 0 < v < a,

0 otherwise,

(1)Determine the value of E(W ) = E[g(V )] = E(kV 2), where k
is a constant; (2) Calculate the value of E(3W + 5).

Solution.

(1)E(W ) = E(g(V )) =

∫ +∞

−∞
kv2·f(v)dv =

∫ a

0
kv2·1

a
dv =

1

3
ka2.

(2)E(3W + 5) = 3E(W ) + 5 = ka2 + 5.
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Variance of a Random Variable

In this section we shall introduce a measure, the variance,
which is an indication of the variability of a random variable.

Definition

The variance of a random variable X is defined by

σ2 ≡ E
[(
X − E(X)

)2]
= V ar(X) =



∞∑
i=1

(xi − µ)2p(xi)

∫ ∞
−∞

(x− µ)2f(x)dx

where µ = E(X).







Variance of a Random Variable

Remark

V ar(X) ≥ 0.

Finally,
the larger the variance is,
the more spread out is the distribution of the random variable
around its mean.





Variance of a Random Variable

Question
What does the variance mean?

The quantity is rather hard to interpret.

So we take square root to change it.

Definition

The standard deviation of a random variable X is given by

σ =
√
V ar(X).





Variance of a Random Variable

Proposition

V ar(X) = E(X2)− [E(X)]2. (5)

Proof. Assume X is discrete. Suppose that µ = E(X).

V ar(X) = E
[(
X − E(X)

)2]
= E[(X − µ)2]

=
∑
x

(x− µ)2p(x) =
∑
x

(x2 − 2µx+ µ2)p(x)

=
∑
x

x2p(x)− 2µ
∑
x

xp(x) +
∑
x

µ2p(x)

= E(X2)− 2µ2 + µ2 = E(X2)− µ2.

The continuous case is similar to prove.





Variance of a Random Variable

Example

Suppose that the p.d.f. of a random variable X is

f(x) =


x
8 for 0 < x < 4,

0 otherwise,

Find V ar(X).

Solution.

V ar(X) =

∫ 4

0

(
x− 8

3

)2
· 1

8
xdx =

∫ 4

0
x2 · 1

8
xdx−

(8

3

)2
=

8

9
.

By using the equation (5), we also have

V ar(X) = E(X2)− E2(X) =

∫ 4

0
x2

1

8
xdx−

(8

3

)2
=

8

9
.



Variance of a Random Variable

Theorem

V ar(X) = 0 if and only if there exists a constant c such that
P (X = c) = 1.

Proof. Suppose first that there exists a constant c such that
P (X = c) = 1. Then E(X) = c, and P [(X − c)2 = 0] = 1.
Therefore,

V ar(X) = E[(X − c)2] = 0.

Conversely, suppose that V ar(X) = 0. Then

P
[(
X − E(X)

)2
> 0
]

= 1 but E
[(
X − E(X)

)2]
= 0. Therefore,

it can be seen that

P
[(
X − E(X)

)2
= 0
]

= 1.

Hence, P (X = E(X)) = 1.







Variance of a Random Variable

Proposition

For any constants a and b,

V ar(aX + b) = a2V ar(X).

Proof. For any constants a and b,

V ar(aX + b) = E
{[

(aX + b)− E(aX + b)
]2}

= E
{
a2
[
X − E(X)

]2}
= a2V ar(X).

Thus, the operator V ar is not linear.





Variance of a Random Variable

Example

Let X∗ = X−E(X)√
V ar(X)

. Find E(X∗) and V ar(X∗).

Solution.

E(X∗) = E
(X − E(X)√

V ar(X)

)
=

1√
V ar(X)

[E(X)− E(X)] = 0.

V ar(X∗) = V ar
(X − E(X)√

V ar(X)

)
=
V ar(X)

V ar(X)
= 1.

Since E(X∗) = 0 and V ar(X∗) = 1, X∗ is usually said to be
standard random variable.





Moments of a Random Variable

The mean and the variance of a random variable are particular
cases of the quantities known as the moments of this variable.

Definition

The kth moment about the origin, or noncentral moment
of a discrete random variable X is defined by

E(Xk) ≡ µ′
k =

∞∑
i=1

xki p(xi)

Definition

The kth moment about the center, or central moment of a
discrete random variable X is defined by

E[(X − µ)k] ≡ µk =

∞∑
i=1

(xi − µ)kp(xi).





Moments of a Random Variable

Theorem

If E(|X|k) < ∞ for some positive integer k, then E(|X|j) < ∞
for every integer j such that j < k.

Proof. For convenience, we assume that the distribution of
X is continuous and the p.d.f. is f . Then

E(|Xj |) =

∫ ∞
−∞
|xj |f(x)dx

=

∫
|x|61

|x|jf(x)dx+

∫
|x|>1

|x|jf(x)dx

6
∫
|x|61

1 · f(x)dx+

∫
|x|>1

|x|jf(x)dx

6 P (|X| 6 1) + E(|X|k).

By hypothesis, E(|X|k) <∞. It therefore follows that
E(|X|j) <∞.



Moments of a Random Variable

Example

Suppose that X has a continuous distribution for which the p.d.f.
has the following form

f(x) = ce−(x−3)
2
, −∞ < x <∞.

Determine the mean of X and all the odd central moments.

Solution. It can be shown that for every positive integer k,∫ ∞
−∞
|x|ke−(x−3)2dx <∞.



Moments of a Random Variable

Solution. Hence, all the moments of X exist.

E(X) =

∫ ∞
−∞

cxe−(x−3)
2
dx

=

∫ ∞
−∞

c(x− 3)e−(x−3)
2
dx+ 3

∫ ∞
−∞

ce−(x−3)
2
dx let t = x− 3,

=

∫ ∞
−∞

cte−t
2
dt+ 3 = 0 + 3 = 3.

For every odd positive integer k, it follows that

E[(X − 3)k] =

∫ ∞
−∞

c(x− 3)ke−(x−3)
2
dx = 0.
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The Application of Expectation and Variation

Proposition

(Markov’s inequality) If X is a random variable that takes
only nonnegative values, then for any value ε > 0,

P (X > ε) 6
E(X)

ε
.

Proof. We give a proof for the case where X is continuous
with density f .

E(X) =

∫ ∞
0

xf(x)dx =

∫ ε

0
xf(x)dx+

∫ ∞
ε

xf(x)dx

>
∫ ∞
ε

xf(x)dx >
∫ ∞
ε

εf(x)dx = ε

∫ ∞
ε

f(x)dx = εP (X > ε),

and the result is proven.





The Application of Expectation and Variation

Proposition

(Chebyshev’s inequality) If X is a random variable with mean
µ and variance σ2, then, for any value ε > 0,

P (|X − µ| > ε) 6
σ2

ε2
.

Proof. Since (X − µ)2 is a nonnegative random variable, we
can apply Markov’s inequality to obtain

P ((X − µ)2 > ε2) 6
E[(X − µ)2]

ε2
.

But since (X − µ)2 > ε2 if and only if |X − µ| > ε, the
preceding is equivalent to

P (|X − µ| > ε) 6
E[(X − µ)2]

ε2
=
σ2

ε2

and the proof is complete.





The Application of Expectation and Variation

From Markov’s inequality, we can see if E(X) is small, then it is
not too likely that X is large.

Chebyshev’s inequality tells us that if σ2 = V ar(X) is small,
then it is not too likely that X is far from its mean.

The importance of Markov’s and Chebyshev’s inequalities is
that they enable us to derive bounds on probabilities when only
the mean, or both the mean and the variance, of the probability
distribution are known.



The Application of Expectation and Variation

Example

Suppose that we know that the number of items produced in a
factory during a week is a random variable with mean 500.

(a) What can be said about the probability that this week’s pro-
duction will be at least 1000?

(b) If the variance of a week’s production is known to equal 100,
then what can be said about the probability that this week’s
production will be between 400 and 600?



The Application of Expectation and Variation

Solution. Let X be the number of items that will be
produced in a week.
(a) By Markov’s inequality,

P (X > 1000) 6
E(X)

1000
=

500

1000
=

1

2
.

(b) By Chebyshev’s inequality,

P (|X − 500| > 100) 6
σ2

(100)2
=

1

100
.

Hence,

P (|X − 500| 6 100) > 1− 1

100
=

99

100
,

and so the probability that this week’s production will be
between 400 and 600 is at least 0.99.



The end

Thank you for your
patience !
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