Section 3.3 Conditional Distributions

School of Sciences, BUPT

If X and Y are discrete random variables, then it is natural to define the *conditional probability function of X given* **that** $Y = y$, by $p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} \equiv \frac{p(x, y)}{p_Y(y)}$ $p_Y(y)$

for all values of y such that $p_Y(y) > 0$. Similarly, the conditional probability function of Y given that $X = x$ is given by

$$
p_{Y|X}(y|x) = P(Y=y|X=x) = \frac{P(X=x, Y=y)}{P(X=x)} = \frac{p(x,y)}{p_X(x)}
$$

for all values of x such that $p_X(x) > 0$.

Discrete Case

Example

Suppose that $p(x, y)$, the joint probability function of X and Y, is given by $p(0, 0) = 0.4$, $p(0, 1) = 0.2$, $p(1, 0) = 0.1$, $p(1, 1) = 0.3$. Calculate the conditional probability function of X given that $Y=1$.

Solution. We first note that

$$
p_Y(1) = \sum_x p(x, 1) = p(0, 1) + p(1, 1) = 0.5.
$$

Hence,

$$
p_{X|Y}(0|1) = \frac{p(0,1)}{p_Y(1)} = \frac{2}{5}
$$

and

$$
p_{X|Y}(1|1) = \frac{p(1,1)}{p_Y(1)} = \frac{3}{5}.
$$

Example

Suppose that X is a random variable, which can be selected randomly from the numbers 1, 2, 3 and 4. Let Y be an another random variable, which can be selected randomly from positive integers 1 to X. Find the joint probability function of (X, Y) .

Solution. It is obvious that all possible values of X and Y are 1, 2, 3 and 4. So we have 4×4 different pairs of (X, Y) . Then

$$
P(X = 1, Y = 1) = P(X = 1) \cdot P(Y = 1 | X = 1) = \frac{1}{4} \cdot 1 = \frac{1}{4}.
$$

\n
$$
P(X = 2, Y = 1) = P(X = 2) \cdot P(Y = 1 | X = 2) = \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{8}.
$$

\n
$$
P(X = 3, Y = 1) = P(X = 3) \cdot P(Y = 1 | X = 3) = \frac{1}{4} \cdot \frac{1}{3} = \frac{1}{12}.
$$

\n
$$
P(X = 4, Y = 1) = P(X = 4) \cdot P(Y = 1 | X = 4) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}.
$$

 \Box

Example

A store has a certain goods. Let X be the number of customers entering this store in a specified period of time. Suppose that $X \sim P(\lambda)$ and the probability of the event that each customer purchases the certain goods is p . If customs are independent, then find the probability function of the number of customers who purchase the certain goods.

Solution. Let Y be the number of customers who purchase the certain goods. Since $X \sim P(\lambda)$,

$$
P(X = m) = \frac{\lambda^m}{m!}e^{-\lambda}, \quad m = 0, 1, 2, \cdots.
$$

Discrete Case

Given that $X = m$, i.e., the number of customers entering this store is m , the conditional probability function of Y is binomial distribution, i.e.,

$$
P(Y = k|X = m) = {m \choose k} p^{k} (1-p)^{m-k}, \quad k = 0, 1, 2, \cdots, m.
$$

Using total probability formula, we have

$$
P(Y = k) = \sum_{m=k}^{+\infty} P(X = m)P(Y = k|X = m)
$$

=
$$
\sum_{m=k}^{+\infty} \frac{\lambda^m}{m!} e^{-\lambda} {m \choose k} p^k (1-p)^{m-k}
$$

=
$$
e^{-\lambda} \frac{\lambda^k}{k!} \sum_{m=k}^{+\infty} \frac{[(1-p)\lambda]^{m-k}}{(m-k)!}
$$

=
$$
e^{-\lambda} \frac{\lambda^k}{k!} e^{\lambda(1-p)} = \frac{\lambda^k}{k!} e^{-\lambda p}, \quad k = 0, 1, 2, \dots
$$

Definition

If X and Y have joint p.d.f. $f(x, y)$, then the conditional probability density function of X given $Y = y$ is given by

$$
f_{X|Y}(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & \text{if } 0 < f_Y(y) < +\infty, \\ 0 & \text{elsewhere.} \end{cases} \tag{1}
$$

Similarly, the **conditional probability density function of** Y given $X = x$ is given by

$$
f_{Y|X}(y|x) = \begin{cases} \frac{f(x,y)}{f_X(x)} & \text{if } 0 < f_X(x) < +\infty, \\ 0 & \text{elsewhere.} \end{cases} \tag{2}
$$

In fact, for each fixed value of y such that $f_Y(y) > 0$, the function $f_{X|Y}(x|y)$ will be a p.d.f. for X over the real line since $f_{X|Y}(x|y) \geq 0$ and $\int_{-\infty}^{+\infty} f_{X|Y}(x|y)dx = 1$. Similarly, for each fixed value of x such that $f_X(x) > 0$, the function $f_{Y|X}(y|x)$ is also a p.d.f. for Y over the real line.

Remark

A conditional p.d.f. is not the result of conditional on a set of probability zero. Actually, the value of $f_{X|Y}(x|y)$ is a limit:

$$
f_{X|Y}(x|y) = \lim_{\varepsilon \to 0} \frac{\partial}{\partial x} P(X \leqslant x|y - \varepsilon < Y \leqslant y + \varepsilon). \tag{3}
$$

The conditioning event $\{y - \varepsilon \le Y \le y + \varepsilon\}$ in equation [\(3\)](#page-11-0) has positive probability if the marginal p.d.f. of Y is positive at y .

Example

Given

$$
f(x,y) = \begin{cases} k & \text{for } 0 < x < y < 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Determine $f_{X|Y}(x|y)$ and $f_{Y|X}(y|x)$.

Solution. The joint p.d.f. is given to be a constant in the region $\{(x, y): 0 < x < y < 1\}$. This gives

$$
\iint_{\mathbb{R}^2} f(x, y) dx dy = \int_0^1 \int_0^y k dx dy = \int_0^1 k y dy = \frac{k}{2} = 1 \Rightarrow k = 2.
$$

$$
f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_x^1 2 dy = 2(1 - x), \qquad 0 < x < 1,
$$

and

$$
f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \int_0^y 2 dx = 2y, \qquad 0 < y < 1.
$$

From equations [\(1\)](#page-9-1) and [\(2\)](#page-9-2), we get if $0 < y < 1$, then

$$
f_{X|Y}(x|y) = \frac{f(x,y)}{f_Y(y)} = \begin{cases} \frac{1}{y} & \text{for } 0 < x < y, \\ 0 & \text{otherwise.} \end{cases}
$$

and if $0 < x < 1$, then

$$
f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{1}{1-x} & \text{for } x < y < 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Example

Given

$$
f(x,y) = \begin{cases} \frac{3}{16}(4 - 2x - y) & \text{for } x > 0, \ y > 0, \ 2x + y < 4, \\ 0 & \text{otherwise.} \end{cases}
$$

(a) Determine $f_{Y|X}(y|x)$. (b) Determine the value of $P(Y \geq 2 \mid X \leq 1/2)$. (c) Determine the value of $P(Y \ge 2 \mid X = 1/2)$.

Solution. (a) First let us find the marginal p.d.f. $f_X(x)$. If $0 < x < 2$, then

$$
f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \int_0^{4-2x} \frac{3}{16} (4 - 2x - y) dy = \frac{3}{8} (2 - x)^2.
$$

If $x \leq 0$ or $x \geq 1$, then $f(x, y) = 0$. i.e.,

$$
f_X(x) = \begin{cases} \frac{3}{8}(2-x)^2 & \text{for } 0 < x < 2, \\ 0 & \text{otherwise,} \end{cases}
$$

So when $0 < x < 2$, we have

$$
f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \begin{cases} \frac{4-2x-y}{2(2-x)^2} & \text{for } 0 < y < 4-2x, \\ 0 & \text{otherwise.} \end{cases}
$$

(b) According to the definition of conditional probability, we have

$$
P(Y \ge 2 \mid X \le 1/2) = \frac{P(X \le 1/2, Y \ge 2)}{P(X \le 1/2)}
$$

=
$$
\frac{\int_0^{1/2} dx \int_2^{4-2x} \frac{3}{16} (4 - 2x - y) dy}{\int_0^{1/2} \frac{3}{8} (2 - x)^2 dx}
$$

=
$$
\frac{\int_0^{1/2} (\frac{3}{8} - \frac{3}{4}x + \frac{3}{8}x^2) dx}{\int_0^{1/2} \frac{3}{8} (2 - x)^2 dx} = \frac{7}{64}.
$$

(c) Since

$$
f_{Y|X}(y|\frac{1}{2}) = f_{Y|X}(y|x)|_{x=1/2} = \begin{cases} \frac{2(3-y)}{9} & \text{for } 0 < y < 3, \\ 0 & \text{otherwise,} \end{cases}
$$

we get

$$
P(Y \ge 2 \mid X = 1/2) = \int_{2}^{+\infty} f_{Y|X} (y \left| \frac{1}{2} \right) dy
$$

=
$$
\int_{2}^{3} \frac{2(3-y)}{9} dy = \frac{1}{9}.
$$

 \Box

Example

Suppose that $(X, Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$. Find $f_{Y|X}(y|x)$ and $f_{X|Y}(x|y).$

Solution. Given $X = x$, the conditional p.d.f. of Y is

$$
f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{1}{\sigma_2\sqrt{2\pi(1-\rho^2)}} \exp\left\{-\frac{1}{2(1-\rho^2)\sigma_2^2}\left(y-\mu_2-\rho\sigma_2\frac{x-\mu_1}{\sigma_1}\right)\right\}
$$

This is also a normal distribution

$$
N\Big(\mu_2+\rho\sigma_2\frac{x-\mu_1}{\sigma_1},(1-\rho^2)\sigma_2^2\Big).
$$

Here x is a constant. Similarly, given $Y = y$, the conditional p.d.f. of X is a normal distribution $N(\mu_1 + \rho \sigma_1 \frac{y - \mu_2}{\sigma_1})$ $\frac{-\mu_2}{\sigma_2}$, $(1-\rho^2)\sigma_1^2$.

For two dimension normal distribution, we can see not only the marginal distributions are normal, but the conditional distributions are also normal.

Discrete

$$
p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{p(x, y)}{p_Y((y))}
$$

$$
p_{Y|X}(y|x) = P(Y=y|X=x) = \frac{P(X=x, Y=y)}{P(X=x)} = \frac{p(x,y)}{p_X(x)}
$$

Continuous

$$
f_{X|Y}(x|y) = \begin{cases} \frac{f(x,y)}{f_Y(y)} & \text{if } 0 < f_Y(y) < +\infty, \\ 0 & \text{elsewhere.} \end{cases}
$$
\n
$$
f_{Y|X}(y|x) = \begin{cases} \frac{f(x,y)}{f_X(x)} & \text{if } 0 < f_X(x) < +\infty, \\ 0 & \text{elsewhere.} \end{cases}
$$

Thank you for your patience !