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Classical Probability

Definition of Classical Experiment

The classical definition or interpretation of probability is
identified with the works of Jacob Bernoulli and Pierre-Simon
Laplace. It is based on the concept of equally likely outcomes.

Generally, a random experiment E is classical if

1. E contains only different limited basic events, that is,

Ω = {ω1, ω2, · · · , ωn}.

We call this kind of sample space simple space , and

2. all outcomes are equally likely to occur.

For example, when a fair coin is tossed, there are two possible
outcomes: a head or a tail. A head and a tail are equally likely
to occur.



Classical Probability

Definition of Classical Probability

For classical random experiment E, the corresponding problems
of probability belong to the category of classical probability .

Definition

For classical random experiment E, Ω = {ω1, ω2, · · · , ωn}, we
define the probability of event A as

P (A) =
#A

#Ω
(1)

where #A means the number of all possible outcomes of event A,
#Ω means the number of all possible outcomes of sample space
Ω. If A is comprised by k different elementary events, then

P (A) =
k

n
.



Geometric Probability

Example

what is the probability that a point is selected randomly from
the interval [0, 1]? If your answer is 0, how can you get that? Is
it coming from 1

∞? If so, what is the probability of choosing the
interval [0, 0.5)? Is your answer 1

2? Obviously, we can not get
that by classical probability.

The definition of classical probability can not be used any more
when the concept of equally likely outcomes is about to be
extended to a line or 2D or 3D area.



Geometric Probability

A random experiment E is called to be geometric if

(i) the sample space is a measurable (such as length, area,
volume, etc.) region, i.e., 0 < L(Ω) <∞, and
(ii) the probability of every event A ⊂ Ω is proportional to the
measure L(A) and has nothing to do with its position and
shape.

In this case, we define the probability of event A as

P (A) =
L(A)

L(Ω)

and P (∅) = 0.



The Frequency Interpretation of Probability

Suppose that some random procedure has several possible

outcomes that are not necessarily equally likely.

How can we define the probability P (A) of any eventuality A of

interest?

For example, suppose that the procedure is the rolling of a die

that is suspected to be weighted, or even clearly asymmetrical,

in not being a perfect cube. What now is the probability of a

six?



The Frequency Interpretation of Probability

Let E be an random experiment, A be an random event.
Suppose that E was repeated n times under similar conditions.
Let fn(A) be the times that A occurs. The ration

Fn(A) =
fn(A)

n

is said to be the frequency of event A in the n trials. If n is
large enough, the probability of event A will be approximated
by Fn(A).
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A Lot of Examples

Example

Suppose that an urn contains α white balls and β black balls, and
that k+1 (k+1 6 α+β) balls are to be selected consecutively at
random without replacement. Try to determine the probability
that the last selected ball is exactly white ball.

Example

Suppose that there are n people, each person will be assigned to
any of the N(n 6 N) rooms with the same probability 1/N . We
shall determine the probabilities of the following events:
A : For the given n rooms, there is exactly one person in one
room.
B : There is exactly one person in one room.
C : There are exactly m people in a given room.



A Lot of Examples

Example

(Birthday problem) If a group consists of n people, what is the
probability that at least two of them have the same birthday?
Ignore leap years and assume that each day in the year is equally
likely as a birthday.

Example

A reception has received 12 visits in a week. Suppose that all
12 receptions are proceeded on Tuesday and Thursday. Is the
reception time required?



A Lot of Examples

Solution. Assume that the reception time is not specified.
Then, the probability of the event that all 12 receptions are
proceeded on Tuesday and Thursday is

212

712
= 0.0000003.

This is a very small probability. Practical experience shows that
rare event should seldom occur (referred to as the impossible
principle). Now in this example, the rare events have happened
in one experiment. So there is a reason to doubt the validity of
the assumption and we can reach the conclusion that the
reception time is required.



A Lot of Examples

Example

(Lunch date problem) You and one of your friends arrange to
meet between 12:00 and 13:00. As a result, it is possible for one
of you to arrive at random between 12:00 and 13:00 and waits
exactly 20 minutes for another one. After 20 minutes, one of you
leaves if another person has not arrived. What is the probability
that you and your friend will meet?

Solution. Let x and y be the time you and your friend
arriving the gate, respectively, then our sample space is a
square Ω = {(x, y)| 12 6 x, y 6 13}. Let M be the event that
two of you will meet at the gate, then M will occur if and only
if |x− y| 6 1/3, i.e.,

M = {(x, y)| 12 6 x, y 6 13, |x− y| 6 1/3}.



A Lot of Examples

Figure: Lunch date problem

In this problem, the expression “equally likely to occur” means
that the probability that the sample point is located in a special
region M ⊂ Ω is proportional to the area of M . Again, since
the certain event Ω has area 1, the probability of M is equal to
the area of M , i.e., P (M) = 1−

(
2
3

)2
= 5

9 .



A Lot of Examples

Example

(Buffon’s needle problem) Given a needle of length l dropped
on a plane ruled with parallel lines d (l < d) units apart. What
is the probability that the needle will cross a line?

Figure: Buffon’s needle problem
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Problems of Classical Probability

Obvious!



Problems of Geometric Probability

Is the definition of geometric probability perfect?

Let us see the following famous example.

Example

(Bertrand paradox) Consider an equilateral triangle inscribed
in a circle. Suppose a chord of the circle is chosen at random.
What is the probability that the chord is longer than a side of the
triangle? Bertrand gave three arguments, all apparently valid,
yet yielding different results.
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Figure: Bertrand paradox



Problems of Frequency

Is this interpretation perfect?

(i) there is no definite indication of an actual number that
would be considered large enough;

(ii) this interpretation of probability rests on the important
assumption that our process or experiment can be repeated
many times under similar conditions. While the real-world
experiment must not be completely controlled but must have
some “random” features;

(iii) the probability of event A will be approximated by Fn(A)
do not mean P (A) is the limit of Fn(A);



Problems of The Frequency

(iv) the frequency interpretation of probability is that it applies

only to a problem in which there can be, at least in principle, a

large number of similar repetition of a certain process. Many

important problems are not of this type.

For example, the frequency interpretation of probability cannot

be applied directly to the probability that a specific

acquaintance will get married within the next two years or to

the probability that a particular medical research project will

lead to the development of a new treatment for a certain disease

within a specified period of time.
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Similarity of the Above Interpretations of probability

Theorem

For classical random experiment E, the probability has the fol-
lowing properties:
(i) for every event A, P (A) > 0,
(ii) P (Ω) = 1,
(iii) for every finite sequence of n disjoint events A1, A2, · · · , An,

P
( n⋃
i=1

Ai

)
=

n∑
i=1

P (Ai).

Property (iii) is called finite additivity.



Geometric Probability

Theorem

For Geometrical random experiment E, the probability has the
following properties:
(i) for every event A, P (A) > 0,
(ii) P (Ω) = 1, and
(iii) for every countable disjoint events A1, A2, · · · ,

P
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P (Ai).

Property (iii) is called countable additivity.



Geometric Probability

Proof. (i) and (ii) are obvious.
(iii) According to countable additivity in measure theory, i.e.,
for every countable disjoint sequence A1, A2, · · · ,

L
( ∞⋃
i=1

Ai

)
=

∞∑
i=1

L(Ai),

then

P
( ∞⋃
i=1

Ai

)
=

L
( ∞⋃
i=1

Ai

)
L(Ω)

=

∞∑
i=1

L(Ai)

L(Ω)
=

∞∑
i=1

P (Ai).



Summary

classical probability:

E contains only different limited basic events,
all outcomes are equally likely to occur.

geometrical probability:

the sample space is a measurable region,
the probability of every event A ⊂ Ω is proportional to the
measure L(A) and has nothing to do with its position and
shape.

frequency: do experiments

Each interpretation of probability, as we can see, has its appeal
and its difficulties. We need a pure mathematical definition for
probability for general cases.



Thank you for your
patience !
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