Section 2.5 Continuous Random Variables

School of Sciences, BUPT

Uniform Distribution

Let a and b be two given real numbers such that $a < b$.

Definition

The distribution of the random variable X is called the **uniform distribution** of the interval $[a, b]$ if the p.d.f. of X is

$$
f(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \leqslant x \leqslant b, \\ 0 & \text{otherwise.} \end{cases}
$$

We write that by $X \sim U(a, b)$.

The corresponding d.f. of X is

$$
F(x) = \begin{cases} 0 & \text{for } x < a, \\ \frac{x - a}{b - a} & \text{for } a \leqslant x < b, \\ 1 & \text{for } x \geqslant b. \end{cases}
$$

The constant a is the *location parameter* and the constant $b - a$ is the scale parameter .

The case where $a = 0$ and $b = 1$ is called the **standard** uniform distribution. The p.d.f. for the standard uniform distribution is

$$
f(x) = \begin{cases} 1 & \text{for } 0 \leqslant x \leqslant 1, \\ 0 & \text{otherwise.} \end{cases}
$$

and the d.f. of the standard uniform distribution is

$$
F(x) = \begin{cases} 0 & \text{for } x < 0, \\ x & \text{for } 0 \leq x < 1, \\ 1 & \text{for } x \geq 1. \end{cases}
$$

Uniform Distribution

Proposition

Suppose that X is a random variable which has uniform distribution of the interval $[a, b]$. Then we have

$$
E(X) = \frac{a+b}{2}
$$
 and $Var(X) = \frac{(b-a)^2}{12}$. (1)

Proof. Using the basic definition of expectation, we know

$$
E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{a}^{b} x \cdot \frac{1}{b-a} dx = \frac{a+b}{2}.
$$

We have

$$
Var(X) = E(X2) - [E(X)]2
$$

= $\int_a^b x^2 \cdot \frac{1}{b-a} dx - \left(\frac{a+b}{2}\right)^2 = \frac{(b-a)^2}{12}.$

The current (in mA) measured in a piece of copper wire is known to follow a uniform distribution over the interval [0, 25]. Write down the formula for the probability density function $f(x)$ of the random variable X representing the current. Calculate the expectation and variance of the distribution and find the distribution function $F(x)$.

Solution. Over the interval [0, 25] the probability density function $f(x)$ is given by the formula

$$
f(x) = \begin{cases} \frac{1}{25 - 0} = 0.04 & \text{for } 0 \leq x \leq 25, \\ 0 & \text{otherwise.} \end{cases}
$$

Using equation [\(1\)](#page-5-0), we have

Uniform Distribution

Solution. Using equation [\(1\)](#page-5-0), we have

$$
E(X) = \frac{25+0}{2} = 12.5mA
$$
 and $Var(X) = \frac{(25-0)^2}{12} = 52.08mA^2$.

The distribution function is obtained by integrating the probability density function as shown below,

$$
F(x) = \int_{-\infty}^{x} f(t)dt.
$$

Hence, choosing the three distinct regions $x < 0$, $0 \le x < 25$ and $x \geqslant 25$ in turn gives:

$$
F(x) = \begin{cases} 0 & \text{for } x < 0, \\ \frac{x}{25} & \text{for } 0 \leq x < 25, \\ 1 & \text{for } x \geq 25. \end{cases}
$$

Uniform Distribution

Example

Suppose that $X \sim U(0, 1)$. Let $Y = g(X) = aX + b, a > 0$.

(a) Find the p.d.f. $f_Y(y)$ of Y.

(b) Calculate the value of $E(Y)$ and $Var(Y)$.

Solution. (a) Obviously, the possible values taken by Y is between b and $a + b$. If $b \leq y \leq a + b$, then

$$
f_Y(y) = f_X\left(\frac{y-b}{a}\right)\frac{1}{a} = \frac{1}{a}.
$$

Otherwise, we have $f_Y(y) = 0$. That means $Y \sim U(b, a + b)$. (b) $E(Y) = E(aX + b) = aE(X) + b = \frac{a}{2} + b.$ $Var(Y) = Var(aX + b) = a^2 Var(X) = \frac{a^2}{12}.$

Suppose that $X \sim U(-1,1)$. Let $Y = g(X) = X^2$. (a) Find the p.d.f. $f_Y(y)$ of Y. (b) Calculate the value of $E(Y)$ and $Var(X)$.

Solution. (a) Since $X \sim U(-1, 1)$, the p.d.f. of X is

$$
f(x) = \begin{cases} \frac{1}{2} & \text{for } -1 \leq x \leq 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Because $y = g(x) = x^2$, the possible values taken by Y is between 0 and 1.

Uniform Distribution

Solution. If $0 < y < 1$, then

$$
f_Y(y) = \frac{1}{2\sqrt{y}} \left[f_X(\sqrt{y}) + f_X(-\sqrt{y}) \right] = \frac{1}{2\sqrt{y}} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2\sqrt{y}}.
$$

If $y \leq 0$ or $y \geq 1$, then $f_Y(y) = 0$.

(b)

$$
E(Y) = E(X^{2}) = \int_{-\infty}^{+\infty} x^{2} f_{X}(x) dx = \int_{-1}^{1} x^{2} \cdot \frac{1}{2} dx = \frac{1}{3}.
$$

$$
Var(Y) = E[(X^{2})^{2}] - [E(X^{2})]^{2} = \int_{-1}^{1} x^{4} \cdot \frac{1}{2} dx - \frac{1}{9} = \frac{1}{5} - \frac{1}{9} = \frac{4}{45}.
$$

 \mathbf{I}

Uniform Distribution

Example

Given a random variable X with distribution $F_X(x)$ which is strict increasing, prove that $Y = F_X(X)$ is uniformly distributed in the interval (0, 1).

(Hint: if
$$
Y = g(X) = F_X(X)
$$
, then $F_Y(y) = y$ for $0 \le y \le 1$.)

Example

Given a random variable Y with uniform distribution of the interval (0, 1). Prove that the distribution of the random variable $X = F_X^-(Y)$ is a specified function $F_X(x)$.

Solution. For the random variable $X = F_X^{-1}(Y)$ and $x \in \mathbb{R}$, $P(X \le x) = P(F_X^{-1}(Y) \le x) = P(Y \le F_X(x)) = F_X(x).$

Definition

Let X be a continuous random variable whose density function is of the form

$$
f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{for } x > 0, \\ 0 & \text{for } x \leq 0, \end{cases}
$$

where $\lambda > 0$ is the scale parameter. We say that X follows a **exponential distribution** with parameter λ . We write that $X \sim Exp(\lambda)$. The case where $\lambda = 1$ is called the standard exponential distribution.

The corresponding d.f. of X is

$$
F(x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \geq 0, \\ 0 & \text{for } x < 0. \end{cases}
$$

Exponential Distribution

We are sure about $f(x)$ is a p.d.f. since

$$
\int_{-\infty}^{\infty} f(x)dx = \int_{0}^{+\infty} \lambda e^{-\lambda x} dx = 1.
$$

The exponential distribution is usually used to model the time until something happens in the process.

Proposition

Suppose that X is a random variable which has exponential distribution with parameter λ . Then we have

$$
E(X) = \frac{1}{\lambda} \quad \text{and} \quad Var(X) = \frac{1}{\lambda^2}.
$$
 (2)

Exponential Distribution

Solution. By using integration by parts,

$$
E(X) = \int_0^{+\infty} \lambda x e^{-\lambda x} dx
$$

= $\lambda \left(\frac{-x e^{-\lambda x}}{\lambda} \Big|_0^{+\infty} + \frac{1}{\lambda} \int_0^{+\infty} e^{-\lambda x} dx \right)$
= $\lambda \left(0 + \frac{1}{\lambda} \frac{-e^{-\lambda x}}{\lambda} \Big|_0^{+\infty} \right) = \frac{1}{\lambda}.$

From the first and second moments we can compute the variance as

$$
Var(X) = E(X^{2}) - [E(X)]^{2}
$$

= $\int_{0}^{+\infty} x^{2} \lambda e^{-\lambda x} dx - (1/\lambda)^{2}$
= $\frac{2}{\lambda^{2}} - \frac{1}{\lambda^{2}} = \frac{1}{\lambda^{2}}.$

If $X \sim Exp(\lambda)$, then

 $P(X > t + s | X > t) = P(X > s)$ for $s, t \ge 0$.

$$
F(x) = P(X \le x) = \begin{cases} 1 - e^{-\lambda x} & \text{for } x \ge 0, \\ 0 & \text{for } x < 0. \end{cases}
$$

The lifetime (in years) of a radio has an exponential distribution with parameter $\lambda = 1/10$. If we buy a five-year-old radio, what is the probability that it will work for less than 10 additional years?

Solution. Let X be the total lifetime of the radio. We have that $X \sim Exp(\lambda = 1/10)$. We seek

$$
P(X \le 15 | X > 5) = 1 - P(X > 15 | X > 5)
$$

= 1 - P(X > 10) = P(X \le 10)
=
$$
\int_0^{10} \frac{1}{10} e^{-x/10} dx = -e^{-x/10} \Big|_0^{10}
$$

= 1 - e^{-1} \approx 0.6321.

Jobs are sent to a printer at an average of 3 jobs per hour. (a) What is the expected time between jobs? (b) What is the probability that the next job is sent within 5 minutes?

Solution. Job arrivals represent rare events, thus the time T between them is exponential with rate 3 jobs/hour, i.e., $\lambda = 3$. (a) Thus $E(T) = 1/\lambda = 1/3$ hours or 20 minutes. (b) Using the same units (hours) we have $5 \text{ min} = 1/12 \text{ hours}$. Thus we compute

$$
P(T < 1/12) = 1 - e^{-3 \cdot \frac{1}{12}} = 1 - e^{-\frac{1}{4}} = 0.2212.
$$

There is an equipment. Let $N(t)$ be the failure time of this equipment at any time length t . Assume that $N(t)$ has the Poisson distribution $P(\lambda t)$. Find the distribution of the interval time T between two failure time.

Solution. Since $N(t) \sim P(\lambda t)$,

$$
P(N(t) = x) = e^{-\lambda t} \frac{(\lambda t)^x}{x!}, \qquad x = 0, 1, 2, \cdots
$$

If $t > 0$, $\{T > t\} = \{N(t) = 0\}$, then

$$
P(T > t) = P(N(t) = 0) = e^{-\lambda t}.
$$

So

$$
P(T \leq t) = \begin{cases} 1 - \exp(-\lambda t) & \text{for } t > 0, \\ 0 & \text{for } t \leq 0. \end{cases}
$$

That means $T \sim Exp(\lambda)$.

In fact, the exponential distribution is the probability distribution that describes the time between events in a Poisson process, i.e., a process in which events occur continuously and independently at a constant average rate.

Definition

Let X be a continuous random variable that can take any real value. If its density function is given by

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad \text{for } -\infty < x < \infty,\tag{3}
$$

then we say that X has a normal (or Gaussian) distribution with parameters μ and σ^2 , where $\mu \in \mathbb{R}$ and $\sigma > 0$. We write that $X \sim N(\mu, \sigma^2).$

Now, let's verify

$$
f(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{\frac{-(x-\mu)^2}{2\sigma^2}}, \quad \text{for } -\infty < x < \infty,
$$

is a valid probability density function by showing that

$$
\int_{-\infty}^{\infty} f(x)dx = 1.
$$

If we let $y = (x - \mu)/\sigma$, then

$$
\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}y^2} \sigma dy.
$$

$$
(\uparrow dx = \sigma dy)
$$

Next, let's prove
$$
\int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy = \sqrt{2\pi}
$$
. Let

$$
I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy.
$$

It follows that

$$
I^2 = I \cdot I = \int_{-\infty}^{\infty} e^{-\frac{1}{2}y^2} dy \int_{-\infty}^{\infty} e^{-\frac{1}{2}z^2} dz
$$

=
$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{1}{2}(y^2 + z^2)} dy dz
$$

=
$$
\int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{1}{2}r^2} r dr d\theta \quad (y = r \cos \theta, z = r \sin \theta)
$$

=
$$
2\pi.
$$

1.
$$
f(\mu - x) = f(\mu + x)
$$
 for all $x \in R$.
2. $f_{\text{max}} = f(\mu) = \frac{1}{\sqrt{2\pi}\sigma}$.

$$
X_1 \sim N(\mu_1, \sigma_1^2), \quad f_1(x) = \frac{1}{\sqrt{2\pi}\sigma_1} e^{\frac{-(x-\mu_1)^2}{2\sigma_1^2}},
$$

$$
X_2 \sim N(\mu_2, \sigma_2^2), \quad f_2(x) = \frac{1}{\sqrt{2\pi}\sigma_2} e^{\frac{-(x-\mu_2)^2}{2\sigma_2^2}},
$$

3. μ : positional parameter 4. σ^2 : shape parameter $(f_{\text{max}} = f(\mu) = \frac{1}{\sqrt{2}})$ $rac{1}{2\pi\sigma}$.)

Proposition

Suppose that $X \sim N(\mu, \sigma^2)$. Then we have

$$
E(X) = \mu \quad \text{and} \quad Var(X) = \sigma^2. \tag{4}
$$

Proof.

$$
E(X) = \int_{-\infty}^{+\infty} x f(x) dx = \int_{-\infty}^{+\infty} x \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx
$$

$$
\sum_{\sigma=-\infty}^{\frac{x-\mu}{\sigma}} \int_{-\infty}^{+\infty} (\mu + \sigma z) \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-z^2/2} \sigma dz
$$

$$
= \mu + \sigma \int_{-\infty}^{+\infty} z \cdot \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz
$$

$$
= \mu + \sigma \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} d\frac{z^2}{2} = \mu,
$$

Proof.

$$
Var(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx
$$

=
$$
\int_{-\infty}^{+\infty} (x - \mu)^2 \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx
$$

=
$$
-\sigma^2 \cdot (x - \mu) \cdot \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} \Big|_{-\infty}^{+\infty}
$$

+
$$
\sigma^2 \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x - \mu)^2}{2\sigma^2}} dx
$$

=
$$
\sigma^2.
$$

 \Box

If $\mu = 0, \sigma^2 = 1$, then the distribution is called **standard** normal distribution.

We denote the r.v. by Z . The p.d.f. of Z is

$$
\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \quad \text{for } -\infty < z < \infty,
$$
 (5)

Proposition

If $X \sim N(\mu, \sigma^2)$, then the d.f. $F(x)$ of X is given by $\Phi\left(\frac{x-\mu}{\sigma}\right)$ σ , i.e.,

$$
F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).
$$

Standard Normal Distribution

Proposition

If $X \sim N(\mu, \sigma^2)$, then the d.f. $F(x)$ of X is given by $\Phi\left(\frac{x-\mu}{\sigma}\right)$ σ $\big),$ i.e.,

$$
F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right).
$$

Proof. Let
$$
s = \frac{t-\mu}{\sigma}
$$
.

$$
F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\frac{x-\mu}{\sigma}} e^{-\frac{s^2}{2}} ds = \Phi\left(\frac{x-\mu}{\sigma}\right).
$$

 \Box

Thus

$$
P(a \leq X \leq b) = F(b) - F(a) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right),
$$

$$
P(X \leq a) = \Phi\left(\frac{a-\mu}{\sigma}\right), \qquad P(X \geq b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right).
$$

Proposition

If $X \sim N(\mu, \sigma^2)$, then

$$
Z = g(X) = \frac{X - \mu}{\sigma}
$$

has a standard normal distribution. Thus

$$
P(a \leq X \leq b) = P\left(\frac{a - \mu}{\sigma} \leq Z \leq \frac{b - \mu}{\sigma}\right)
$$

$$
= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right),
$$

$$
P(X \leq a) = \Phi\left(\frac{a - \mu}{\sigma}\right), \qquad P(X \geq b) = 1 - \Phi\left(\frac{b - \mu}{\sigma}\right).
$$

Standard Normal Distribution

Proposition

(i)
$$
\Phi(x) + \Phi(-x) = 1
$$
, (ii) $\Phi(0) = 1/2$.

Table of Normal Probabilities in Appendix gives $\Phi(z) = P(Z \leq z)$, the area under the standard normal density curve to the left of z, for $z = 0, 0.01, \dots, 3.98, 3.99$.

Let us determine the following standard normal probabilities: (a) $P(Z \le 1.25)$, (b) $P(Z > 1.25)$, (c) $P(Z \le -1.25)$, (d) $P(-0.38 \leq Z \leq 1.25)$.

Solution. (a) $P(Z \le 1.25) = \Phi(1.25) = 0.89435$. (b) $P(Z > 1.25) = 1 - P(Z \le 1.25) = 1 - \Phi(1.25) = 0.10565$. (c) $P(Z \le -1.25) = \Phi(-1.25) = 1 - \Phi(1.25) = 0.10565$. (d)

$$
P(-0.38 \le Z \le 1.25) = \Phi(1.25) - \Phi(-0.38)
$$

= $\Phi(1.25) - [1 - \Phi(0.38)]$
= 0.89435 - 0.35197 = 0.54238.

The time that it takes a driver to react to the brake lights on a decelerating vehicle is critical in helping to avoid rear-end collisions. Suppose that reaction time for an in-traffic response to a brake signal from standard brake lights can be modeled with a normal distribution having mean value 1.25sec and standard deviation of 0.46sec. What is the probability that reaction time is between 1.00sec and 1.75sec?

Solution. If we let X denote reaction time, then

$$
P(1 \le X \le 1.75)
$$

= $P\left(\frac{1 - 1.25}{0.46} \le Z \le \frac{1.75 - 1.25}{0.46}\right)$
= $P(-0.54 \le Z \le 1.09) = \Phi(1.09) - (1 - \Phi(0.54))$
= 0.86214 - (1 - 0.70540) = 0.56754.

Similarly, if we view 2sec as a critically long reaction time, the probability that actual reaction time will exceed this value is

$$
P(X > 2) = P\left(Z > \frac{2 - 1.25}{0.46}\right)
$$

= P(Z > 1.63)
= 1 - Φ (1.63)
= 0.05155.

Observe the Table of Normal Probabilities in Appendix, we find the largest value of z is 3.99.

 $z = 4.5, 8.9, ?$

Example

The breakdown voltage of a randomly chosen diode of a particular type is known to be normally distributed. What is the probability that a diode's breakdown voltage is within 1 standard deviation(SD) of its mean value?

Solution. This question can be answered without knowing either μ or σ , as long as the distribution is known to be normal; the answer is the same for any normal distribution:

 $P(X)$ is within 1 standard deviation of its mean) $= P(|X - \mu| \leq \sigma) = P(\mu - \sigma \leq X \leq \mu + \sigma)$ $= P\left(\frac{\mu-\sigma-\mu}{\sigma-\mu}\right)$ $\frac{\sigma - \mu}{\sigma} \leqslant Z \leqslant \frac{\mu + \sigma - \mu}{\sigma}$ σ \setminus $= P(-1 \leq Z \leq 1)$ $= \Phi(1) - \Phi(-1) = 0.6826.$

Similarly,

$$
P(|X - \mu| \le 2\sigma) = P(-2 \le Z \le 2) = 0.9544,
$$

$$
P(|X - \mu| \le 3\sigma) = P(-3 \le Z \le 3) = 0.9974.
$$

3σ -principle

Proposition

Suppose that $X \sim N(\mu, \sigma^2)$. Let $Y = aX + b$, $(a \neq 0)$. Then Y has a normal distribution with parameters $a\mu + b$ and $a^2\sigma^2$.

For example,

If $X \sim N(0, 1)$ and $Y = 2X + 3$, then $Y \sim N(3, 4)$.

If $X \sim N(1, 4)$ and $Y = 5X + 2$, then $Y \sim N(7, 100)$.

Example

Suppose that $X \sim N(3, 4)$. Let $Y = 2X + 1$.

(a) Find the value of $P(7 < Y < 9)$.

(b) Let $Y = aX + 4$, find the value a such that $P(Y \le 7) = 1/2$.

Solution. Let $F(x)$ be the d.f. of X. (a)

$$
P(7 < Y < 9) = P(3 < X < 4)
$$

= F(4) - F(3)
= $\Phi\left(\frac{4-3}{2}\right) - \Phi\left(\frac{3-3}{2}\right)$
= 0.69146 - 0.5 = 0.19146.

Example

Suppose that $X \sim N(3, 4)$. Let $Y = 2X + 1$.

(a) Find the value of $P(7 < Y < 9)$.

(b) Let $Y = aX + 4$, find the value a such that $P(Y \le 7) = 1/2$.

Solution.

(b) Since $P(Y \le 7) = 1/2$ and $F_Y(E(Y)) = 0.5$,

$$
E(Y)=7.
$$

We have $E(Y) = E(aX + 4) = aE(X) + 4 = 3a + 4$. Thus

 $a = 1$.

Examples

- reaction time for an in-traffic response
- the breakdown voltage of a randomly chosen diode
- length of human pregnancy
- stock price
- \bullet height, weight, IQ-score, \cdots

History

- 1733 De Moivre, an approximation distribution
- 1783 Laplace, describe the distribution of errors
- 1809 Gauss, analyze astronomical data

Table: some important distributions

Thank you for your patience !