diff --git a/assets/section_2.2_1686907456219_0.edn b/assets/section_2.2_1686907456219_0.edn index 70e2d0e..89a7e67 100644 --- a/assets/section_2.2_1686907456219_0.edn +++ b/assets/section_2.2_1686907456219_0.edn @@ -154,5 +154,58 @@ :height 544.252}), :page 35}, :content {:text "The Distribution Function of Function of a Random Variable"}, - :properties {:color "blue"}}], - :extra {:page 36}} + :properties {:color "blue"}} + {:id #uuid "648c2d05-82d4-472f-901c-b362852e2a3a", + :page 35, + :position {:bounding {:x1 0, + :y1 44.674476623535156, + :x2 641.643798828125, + :y2 325.9700393676758, + :width 725.67, + :height 544.252}, + :rects ({:x1 0, + :y1 44.674476623535156, + :x2 0, + :y2 67.17447662353516, + :width 725.67, + :height 544.252} + {:x1 0, + :y1 60.67708110809326, + :x2 0, + :y2 83.17708110809326, + :width 725.67, + :height 544.252} + {:x1 0, + :y1 76.67968463897705, + :x2 0, + :y2 99.17968463897705, + :width 725.67, + :height 544.252} + {:x1 508.04888916015625, + :y1 204.24478912353516, + :x2 641.643798828125, + :y2 228.41144561767578, + :width 725.67, + :height 544.252} + {:x1 56.686195373535156, + :y1 236.76432037353516, + :x2 623.8931884765625, + :y2 260.9309768676758, + :width 725.67, + :height 544.252} + {:x1 56.686195373535156, + :y1 269.28385162353516, + :x2 640.8726196289062, + :y2 293.4505081176758, + :width 725.67, + :height 544.252} + {:x1 56.686195373535156, + :y1 301.80338287353516, + :x2 286.65955352783203, + :y2 325.9700393676758, + :width 725.67, + :height 544.252}), + :page 35}, + :content {:text "we can assert that if X is a random variable, then Y := g(X) = g(X(ω)), where g is a real-valued function defined on the real line, is a random variable as well"}, + :properties {:color "yellow"}}], + :extra {:page 40}} diff --git a/pages/hls__section_2.2_1686907456219_0.md b/pages/hls__section_2.2_1686907456219_0.md index 1996c72..239dbaa 100644 --- a/pages/hls__section_2.2_1686907456219_0.md +++ b/pages/hls__section_2.2_1686907456219_0.md @@ -47,4 +47,9 @@ file-path:: ../assets/section_2.2_1686907456219_0.pdf ls-type:: annotation hl-page:: 35 hl-color:: blue - id:: 648c2c9a-fcca-43e3-94a6-466f52131b48 \ No newline at end of file + id:: 648c2c9a-fcca-43e3-94a6-466f52131b48 +- we can assert that if X is a random variable, then Y := g(X) = g(X(ω)), where g is a real-valued function defined on the real line, is a random variable as well + ls-type:: annotation + hl-page:: 35 + hl-color:: yellow + id:: 648c2d05-82d4-472f-901c-b362852e2a3a \ No newline at end of file diff --git a/pages/总复习2023t1.md b/pages/总复习2023t1.md index 7c43d2a..19d6c4d 100644 --- a/pages/总复习2023t1.md +++ b/pages/总复习2023t1.md @@ -2705,7 +2705,8 @@ - Continuous type - ((648c2c54-b536-40ba-8191-ef1aeb2be0b9)) - ((648c2c9a-fcca-43e3-94a6-466f52131b48)) - - + - ((648c2d05-82d4-472f-901c-b362852e2a3a)) + - - LATER 学积分 :LOGBOOK: CLOCK: [2023-06-03 Sat 17:05:07]--[2023-06-03 Sat 17:05:08] => 00:00:01