121 lines
2.7 KiB
Markdown
121 lines
2.7 KiB
Markdown
![]() |
# Leetcode Two-Sum-IV-Input-Is-a-BST
|
||
|
|
||
|
#### 2022-07-08 11:11
|
||
|
|
||
|
> ##### Algorithms:
|
||
|
>
|
||
|
> #algorithm #binary_search #BFS
|
||
|
>
|
||
|
> ##### Data structures:
|
||
|
>
|
||
|
> #DS #binary_tree #binary_search_tree
|
||
|
>
|
||
|
> ##### Difficulty:
|
||
|
>
|
||
|
> #coding_problems #difficulty_easy
|
||
|
>
|
||
|
> ##### Additional tags:
|
||
|
>
|
||
|
> #leetcode
|
||
|
>
|
||
|
> ##### Revisions:
|
||
|
>
|
||
|
> N/A
|
||
|
|
||
|
##### Related topics:
|
||
|
|
||
|
##### Links:
|
||
|
|
||
|
- [Link to problem](https://leetcode.com/problems/two-sum-iv-input-is-a-bst/)
|
||
|
- [Three method to solve this](https://leetcode.com/problems/two-sum-iv-input-is-a-bst/discuss/106059/JavaC%2B%2B-Three-simple-methods-choose-one-you-like)
|
||
|
|
||
|
***
|
||
|
|
||
|
### Problem
|
||
|
|
||
|
Given the `root` of a Binary Search Tree and a target number `k`, return _`true` if there exist two elements in the BST such that their sum is equal to the given target_.
|
||
|
|
||
|
#### Examples
|
||
|
|
||
|
**Example 1:**
|
||
|
|
||
|

|
||
|
|
||
|
**Input:** root = [5,3,6,2,4,null,7], k = 9
|
||
|
**Output:** true
|
||
|
|
||
|
**Example 2:**
|
||
|
|
||
|

|
||
|
|
||
|
**Input:** root = [5,3,6,2,4,null,7], k = 28
|
||
|
**Output:** false
|
||
|
|
||
|
#### Constraints
|
||
|
|
||
|
- The number of nodes in the tree is in the range `[1, 104]`.
|
||
|
- `-104 <= Node.val <= 104`
|
||
|
- `root` is guaranteed to be a **valid** binary search tree.
|
||
|
- `-105 <= k <= 105`
|
||
|
|
||
|
### Thoughts
|
||
|
|
||
|
> [!summary]
|
||
|
> This is a #BFS #hash_table problem.
|
||
|
|
||
|
Mainly two methods:
|
||
|
|
||
|
1. #BFS with hash table. Time space O(n)
|
||
|
This can be quicker since you are starting at the middle, which is more likely to hit the answer, theoretically taking less time.
|
||
|
2. #binary_search. Time O(hn), h is the height of BST, best case h == log(n), worst case h == n
|
||
|
for every node, binary search in the tree for the answer.
|
||
|
|
||
|
### Solution
|
||
|
|
||
|
BFS with hash table
|
||
|
|
||
|
```cpp
|
||
|
/**
|
||
|
* Definition for a binary tree node.
|
||
|
* struct TreeNode {
|
||
|
* int val;
|
||
|
* TreeNode *left;
|
||
|
* TreeNode *right;
|
||
|
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
|
||
|
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
||
|
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
|
||
|
* };
|
||
|
*/
|
||
|
class Solution {
|
||
|
public:
|
||
|
bool findTarget(TreeNode* root, int k) {
|
||
|
// BFS with unordered_set
|
||
|
// Take note: when to push root, when to push root->left and root->right
|
||
|
unordered_set<int> uset;
|
||
|
queue<TreeNode*> pending;
|
||
|
pending.push(root);
|
||
|
|
||
|
TreeNode* ptr;
|
||
|
while(!pending.empty()) {
|
||
|
ptr = pending.front();
|
||
|
pending.pop();
|
||
|
|
||
|
// find first, to avoid k = 10, val = 5
|
||
|
if (uset.find(ptr->val) != uset.end()) {
|
||
|
return true;
|
||
|
}
|
||
|
uset.insert(k - ptr->val);
|
||
|
|
||
|
if (ptr->left) {
|
||
|
pending.push(ptr->left);
|
||
|
}
|
||
|
if (ptr->right) {
|
||
|
pending.push(ptr->right);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
};
|
||
|
```
|