2023-06-16 17:24:59 +08:00
|
|
|
file:: [section_2.2_1686907456219_0.pdf](../assets/section_2.2_1686907456219_0.pdf)
|
|
|
|
file-path:: ../assets/section_2.2_1686907456219_0.pdf
|
|
|
|
|
|
|
|
- The Definition of Distribution Function
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 3
|
|
|
|
hl-color:: blue
|
2023-06-16 17:25:59 +08:00
|
|
|
id:: 648c2a50-7acf-4cd5-b075-d0e970e114a4
|
|
|
|
- The Properties of Distribution Function
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 4
|
|
|
|
hl-color:: blue
|
|
|
|
id:: 648c2a73-3961-4723-90e8-5f160bb18e0d
|
|
|
|
- [:span]
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 4
|
|
|
|
hl-color:: yellow
|
|
|
|
id:: 648c2a88-3d0f-47d2-be44-21df002a1def
|
|
|
|
hl-type:: area
|
2023-06-16 17:26:59 +08:00
|
|
|
hl-stamp:: 1686907527770
|
|
|
|
- [:span]
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 7
|
|
|
|
hl-color:: yellow
|
|
|
|
id:: 648c2abf-5c5e-4af9-9e13-bb566f3206e8
|
|
|
|
hl-type:: area
|
2023-06-16 17:28:59 +08:00
|
|
|
hl-stamp:: 1686907580838
|
|
|
|
- [:span]
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 9
|
|
|
|
hl-color:: yellow
|
|
|
|
id:: 648c2b26-e92d-43f7-b8e1-60b51a2b5268
|
|
|
|
hl-type:: area
|
2023-06-16 17:31:59 +08:00
|
|
|
hl-stamp:: 1686907685844
|
|
|
|
- A random variable is said to be of discrete type if the number of different values it can take is finite or countably infinite.
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 17
|
|
|
|
hl-color:: yellow
|
|
|
|
id:: 648c2be0-787e-4e1f-8d0c-b859f0d08383
|
2023-06-16 17:33:59 +08:00
|
|
|
hl-stamp:: 1686907879808
|
|
|
|
- We call X a continuous random variable if there is a function f defined for all x ∈ R and having the following properties:
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 25
|
|
|
|
hl-color:: yellow
|
2023-06-16 17:34:59 +08:00
|
|
|
id:: 648c2c54-b536-40ba-8191-ef1aeb2be0b9
|
|
|
|
- The Distribution Function of Function of a Random Variable
|
|
|
|
ls-type:: annotation
|
|
|
|
hl-page:: 35
|
|
|
|
hl-color:: blue
|
|
|
|
id:: 648c2c9a-fcca-43e3-94a6-466f52131b48
|