131 lines
2.7 KiB
Markdown
131 lines
2.7 KiB
Markdown
![]() |
# Leetcode Implement-Queue-Using-Stacks
|
|||
|
|
|||
|
#### 2022-07-03 09:52
|
|||
|
|
|||
|
> ##### Data structures:
|
|||
|
>
|
|||
|
> #DS #stack #queue
|
|||
|
>
|
|||
|
> ##### Difficulty:
|
|||
|
>
|
|||
|
> #coding_problems #difficulty_easy
|
|||
|
>
|
|||
|
> ##### Additional tags:
|
|||
|
>
|
|||
|
> #leetcode #CS_list_need_understanding
|
|||
|
>
|
|||
|
> ##### Revisions:
|
|||
|
>
|
|||
|
> 2022-09-21
|
|||
|
|
|||
|
##### Related topics:
|
|||
|
|
|||
|
##### Links:
|
|||
|
|
|||
|
- [Link to problem](https://leetcode.com/problems/implement-queue-using-stacks/)
|
|||
|
|
|||
|
***
|
|||
|
|
|||
|
### Problem
|
|||
|
|
|||
|
Implement a first in first out (FIFO) queue using only two stacks. The implemented queue should support all the functions of a normal queue (`push`, `peek`, `pop`, and `empty`).
|
|||
|
|
|||
|
Implement the `MyQueue` class:
|
|||
|
|
|||
|
- `void push(int x)` Pushes element x to the back of the queue.
|
|||
|
- `int pop()` Removes the element from the front of the queue and returns it.
|
|||
|
- `int peek()` Returns the element at the front of the queue.
|
|||
|
- `boolean empty()` Returns `true` if the queue is empty, `false` otherwise.
|
|||
|
|
|||
|
**Notes:**
|
|||
|
|
|||
|
- You must use **only** standard operations of a stack, which means only `push to top`, `peek/pop from top`, `size`, and `is empty` operations are valid.
|
|||
|
- Depending on your language, the stack may not be supported natively. You may simulate a stack using a list or deque (double-ended queue) as long as you use only a stack's standard operations.
|
|||
|
|
|||
|
#### Examples
|
|||
|
|
|||
|
**Input**
|
|||
|
|
|||
|
```
|
|||
|
["MyQueue", "push", "push", "peek", "pop", "empty"]
|
|||
|
[[], [1], [2], [], [], []]
|
|||
|
```
|
|||
|
|
|||
|
**Output**
|
|||
|
|
|||
|
```
|
|||
|
[null, null, null, 1, 1, false]
|
|||
|
```
|
|||
|
|
|||
|
**Explanation**
|
|||
|
|
|||
|
```
|
|||
|
MyQueue myQueue = new MyQueue();
|
|||
|
myQueue.push(1); // queue is: [1]
|
|||
|
myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
|
|||
|
myQueue.peek(); // return 1
|
|||
|
myQueue.pop(); // return 1, queue is [2]
|
|||
|
myQueue.empty(); // return false
|
|||
|
```
|
|||
|
|
|||
|
#### Constraints
|
|||
|
|
|||
|
**Constraints:**
|
|||
|
|
|||
|
- `1 <= x <= 9`
|
|||
|
- At most `100` calls will be made to `push`, `pop`, `peek`, and `empty`.
|
|||
|
- All the calls to `pop` and `peek` are valid.
|
|||
|
|
|||
|
### Thoughts
|
|||
|
|
|||
|
> [!summary]
|
|||
|
> Use two stacks to implement a queue.
|
|||
|
|
|||
|
One stack reverse the FIFO order, but two stack can reverse back.
|
|||
|
|
|||
|
In real life, this can improve speed as you only lock one stack because of thread safety.
|
|||
|
|
|||
|
### Solution
|
|||
|
|
|||
|
```cpp
|
|||
|
class MyQueue {
|
|||
|
stack<int> input;
|
|||
|
stack<int> out;
|
|||
|
|
|||
|
public:
|
|||
|
void push(int x) { input.push(x); }
|
|||
|
|
|||
|
int pop() {
|
|||
|
move();
|
|||
|
int top = out.top();
|
|||
|
out.pop();
|
|||
|
return top;
|
|||
|
}
|
|||
|
|
|||
|
int peek() {
|
|||
|
move();
|
|||
|
return out.top();
|
|||
|
}
|
|||
|
|
|||
|
void move() {
|
|||
|
if (out.empty()) {
|
|||
|
while (!input.empty()) {
|
|||
|
out.push(input.top());
|
|||
|
input.pop();
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
bool empty() { return input.empty() && out.empty(); }
|
|||
|
};
|
|||
|
|
|||
|
/**
|
|||
|
* Your MyQueue object will be instantiated and called as such:
|
|||
|
* MyQueue* obj = new MyQueue();
|
|||
|
* obj->push(x);
|
|||
|
* int param_2 = obj->pop();
|
|||
|
* int param_3 = obj->peek();
|
|||
|
* bool param_4 = obj->empty();
|
|||
|
*/
|
|||
|
```
|