Finish theme 4
This commit is contained in:
parent
b5a734a1b7
commit
811a47217d
50
4-smart-agriculture.md
Normal file
50
4-smart-agriculture.md
Normal file
|
@ -0,0 +1,50 @@
|
||||||
|
# Smart agriculture
|
||||||
|
|
||||||
|
## Present state and history
|
||||||
|
|
||||||
|
- Urban smart agriculture
|
||||||
|
- Evolution of agriculture
|
||||||
|
- Smart agriculture: agriculture with ICT
|
||||||
|
- Benefits
|
||||||
|
- Informed decision
|
||||||
|
- In depth analysis
|
||||||
|
- All kinds of monitoring, supply chain, crop, water, environmental1
|
||||||
|
- Crop monitoring: the systematic observation and assessment of crops
|
||||||
|
throughout their growth cycle to improve productivity and make
|
||||||
|
informed decisions
|
||||||
|
- Water management: optimize crop yield while minimizing waste of water
|
||||||
|
resource
|
||||||
|
- Plant disease identification: helps in crop yield improvement
|
||||||
|
- Precision agriculture: promise better yield, and less water and
|
||||||
|
fertizers
|
||||||
|
- Environment monitoring: schedule irrigation, and crop protection for
|
||||||
|
bad weather
|
||||||
|
- Data sources
|
||||||
|
- Terrestial network
|
||||||
|
- LAP layer
|
||||||
|
- HAP layer
|
||||||
|
- Sattleite layer
|
||||||
|
- Using AI to automate and interpret data: ML, DL
|
||||||
|
- Challenges:
|
||||||
|
- Data security
|
||||||
|
- Network
|
||||||
|
- Device threats
|
||||||
|
- Privacy
|
||||||
|
|
||||||
|
## Summaey
|
||||||
|
|
||||||
|
- Earth observations are time series data that offer intelligence to climate and
|
||||||
|
agriculture to make these smart.
|
||||||
|
- Rely on connected airborne platforms and surface based platforms
|
||||||
|
- Climate study is connected with change detection
|
||||||
|
- Hard to determine change agent
|
||||||
|
- Smart agriculture: the most promising to benefit from Earth obervation
|
||||||
|
- 7 areas:
|
||||||
|
- Supply chain
|
||||||
|
- Crop monitoring
|
||||||
|
- Water management
|
||||||
|
- Precision agriculture
|
||||||
|
- Environment monitoring
|
||||||
|
- Soil health monitoring
|
||||||
|
- Livestock management
|
||||||
|
- Generate big data, hard for manual use, but good for AI
|
69
4-smart-climate.md
Normal file
69
4-smart-climate.md
Normal file
|
@ -0,0 +1,69 @@
|
||||||
|
# Smart climate
|
||||||
|
|
||||||
|
## Definition
|
||||||
|
|
||||||
|
- Climate Data Record: Data to make climate smart:
|
||||||
|
- Time series of measurements
|
||||||
|
- Length, consistency, continuity
|
||||||
|
- Determine climate variability, and change
|
||||||
|
- To monitor changes in order to predict / mitiagte the consequences
|
||||||
|
- Variability:
|
||||||
|
- El Nino
|
||||||
|
- La Nina
|
||||||
|
- Land disturbance: A **event** that triggers disrupts in ecosystems, community
|
||||||
|
or population structure, and changes resources, substance availability or
|
||||||
|
physical environment
|
||||||
|
- Climate change: global warming
|
||||||
|
- Succession
|
||||||
|
- Process that the structure of a biological community changes over time
|
||||||
|
|
||||||
|
## Reason
|
||||||
|
|
||||||
|
- Animal-based food production emits GCG
|
||||||
|
- Climate change
|
||||||
|
- Areas affected by desertification
|
||||||
|
|
||||||
|
## Implementation
|
||||||
|
|
||||||
|
- Before smart climate
|
||||||
|
- Data collected and managed by governments
|
||||||
|
- Greenhouse gas (GCG) emission relies on self reporting
|
||||||
|
- Calculated based on known fuel consumption
|
||||||
|
- Data is sparse in space and time, also incomplete
|
||||||
|
- Earth observation: acquire data from a variety of sensors
|
||||||
|
- Remote sensing:
|
||||||
|
- Capture images in a spectrum
|
||||||
|
- Classify land coverage and use, incl. change over time
|
||||||
|
- Measure the geometry of natural and human made objects
|
||||||
|
- Identify and differenciate species of vegetation
|
||||||
|
- Carbon Dioxide Removal (CDR)
|
||||||
|
- Change agent characterization:
|
||||||
|
- Change agent: a driver or factor of change
|
||||||
|
- Direct or proxiamte causes
|
||||||
|
- Distal or underlying driving forces
|
||||||
|
- Attribution:
|
||||||
|
- Can happen simultaneously or in proximity
|
||||||
|
- Result in change
|
||||||
|
- Challenging to collect high quality change agent
|
||||||
|
|
||||||
|
## Examples
|
||||||
|
|
||||||
|
### Detecting fire with remote sensing
|
||||||
|
|
||||||
|
### Detecting change agent
|
||||||
|
#### Using random forest
|
||||||
|
|
||||||
|
### Detecting deforestation with remote sensing
|
||||||
|
|
||||||
|
### Frequency of observations
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
## Collaborate for better EO information
|
||||||
|
- data fusion proces
|
||||||
|
- Input: Hetereogeneous data
|
||||||
|
- Process: data alignment and data / object correlation
|
||||||
|
- Intemediate output: Alighed and correlated data
|
||||||
|
- Process: Attribute or identity estimation
|
||||||
|
- Result: fusion data
|
||||||
|
- Obervation level, feature level, decision level
|
Loading…
Reference in a new issue