add 1-4, took me 2 hrs
This commit is contained in:
parent
179cc633a6
commit
83b4fa9529
113
1-4-scalability.md
Normal file
113
1-4-scalability.md
Normal file
|
@ -0,0 +1,113 @@
|
||||||
|
# Scalability
|
||||||
|
|
||||||
|
## Definition
|
||||||
|
|
||||||
|
- Ability to use more resources, without major change in original setup
|
||||||
|
|
||||||
|
## Reasons ( Not important )
|
||||||
|
|
||||||
|
- Increasing data
|
||||||
|
- Globalization
|
||||||
|
- New technologies
|
||||||
|
|
||||||
|
## Trends
|
||||||
|
|
||||||
|
### Moore's law
|
||||||
|
|
||||||
|
### Parallel computing
|
||||||
|
|
||||||
|
### Distributed and cloud computing
|
||||||
|
|
||||||
|
### Virtualization
|
||||||
|
|
||||||
|
### Cluster computing
|
||||||
|
|
||||||
|
- Definition: loosely or tightly coupled pool of computers that work together
|
||||||
|
collectively and cooperatively as a single computing resource to solve the
|
||||||
|
same or common task
|
||||||
|
- Benefits
|
||||||
|
- Enables scalable parallel computing
|
||||||
|
- Achieves high availability through stand along operation, and fail over
|
||||||
|
- Modular growth: easy to upgrade
|
||||||
|
|
||||||
|
## Measurements of scalability
|
||||||
|
|
||||||
|
- Functional scalability: Add new functions, and no degradation in memory usage
|
||||||
|
and performance
|
||||||
|
- Geographical scalability: Distributive globally, no degradation in
|
||||||
|
performance.
|
||||||
|
- Administrative scalability: Adding more users, no degradation
|
||||||
|
- Heterogeneous and generational: Adding features and components from different
|
||||||
|
vendors and manufacturers, no degradation
|
||||||
|
- Load scalability: Adding more load, no degradation
|
||||||
|
|
||||||
|
## Strategies for scalability: horizontal and vertical
|
||||||
|
|
||||||
|
- Horizontal: Add more nodes to and existing cluster
|
||||||
|
- Vertical: Add more resource to **single node**
|
||||||
|
|
||||||
|
## Performance and Hardware scalability
|
||||||
|
|
||||||
|
### Relationship (Important)
|
||||||
|
|
||||||
|
- Scaling **increases** performance
|
||||||
|
- Performance is **not** directly proportional to resources added
|
||||||
|
- Diminishing return occurs, then tuning is a better choice
|
||||||
|
|
||||||
|
### Amdahl's law (Important)
|
||||||
|
|
||||||
|
- formula
|
||||||
|
- Speedup factor:
|
||||||
|
$$S = T / (\alpha \times T + (1 - \alpha \times T / n)) = 1 / (\alpha + (1 - \alpha) / n)$$
|
||||||
|
- $\alpha$: fraction of serial computation
|
||||||
|
- 1 - alpha: part that can be parallelized
|
||||||
|
- $n$: processors used
|
||||||
|
- Max speedup of n processors, is only achieved when alpha reaches zero, which
|
||||||
|
means the program is fully parallelized
|
||||||
|
- TODO: work on page 19, draw graph
|
||||||
|
- Assumption: use the **same amount of workload for both sets**
|
||||||
|
- System efficiency formula:
|
||||||
|
- $$Efficiency = E = Speedup / n = 1 / ( \alpha \times n + 1 - \alpha )$$
|
||||||
|
- Efficiency is low, when load is large, because most nodes are idling (waiting
|
||||||
|
for serial computation to complete)
|
||||||
|
|
||||||
|
### Gustafson’s Law
|
||||||
|
|
||||||
|
- To enhance efficiency, scale the workload to match the capacity
|
||||||
|
- Also called the Scaled Worload Speedup
|
||||||
|
- Formula
|
||||||
|
- Scale the workload to: $$Wnew= \alpha W + (1 - \alpha) \times n \times W$$
|
||||||
|
- $n$: processor count
|
||||||
|
- $W$: workload
|
||||||
|
- $Wnew$: Scaled workload
|
||||||
|
- Only parallelizable portion is scaled
|
||||||
|
- **Scaled workload** speedup
|
||||||
|
- $$S' = W' / W = a + (1-a) \times n$$
|
||||||
|
- **Scaled** efficiency:
|
||||||
|
- $$S' / n = a / n + (1 - a)$$
|
||||||
|
- TODO: do some calculation
|
||||||
|
|
||||||
|
## Availaility (Important)
|
||||||
|
|
||||||
|
- Formula:
|
||||||
|
- $$SA = MTTF / (MTTF + MTTR)$$
|
||||||
|
- $MTTF$: Mean time to **failure**, the longer the better
|
||||||
|
- $MTTR$: Mean time to **repair**, the shorter the better
|
||||||
|
|
||||||
|
## Types of scaling
|
||||||
|
|
||||||
|
- Strong: How performances changes, by increasing **processors** for **fixed** problem
|
||||||
|
- Weak: How the performance changes by increasing **processors** for **problem per processor**
|
||||||
|
|
||||||
|
## Scalability in cloud computing
|
||||||
|
|
||||||
|
- Elasticity: resource can be altered
|
||||||
|
- Virtualization scaling: adding existing system to cloud
|
||||||
|
- Performance issues: Performance of virtualized components may be slower than bare metal
|
||||||
|
- Scale by migrating resources: Regions and Availaility Zones
|
||||||
|
- Region: physical geographical location, that consists of one or more zones
|
||||||
|
- Load balancing: AWS Elastic Load balancing, distributes incoming application
|
||||||
|
traffic across multiple targets.
|
||||||
|
- Auto scaling: AWS EC2 auto scaling
|
||||||
|
- CDN: AWS CloudFront, use edge caching on edge location to serve content to anywhere closer to the vieweer, in order to achieve lower **latency** and higher **transfer speed**
|
||||||
|
- TODO: work the questions
|
Loading…
Reference in a new issue