77 lines
2.1 KiB
C
77 lines
2.1 KiB
C
// More of a math problem
|
|
#include <stdio.h>
|
|
#define MAX 100
|
|
|
|
// *** THERE IS AN SIMPLER SOLUTION, THIS ONE IS BLOATED AND BAD ***
|
|
//
|
|
// There are two main movements:
|
|
// 1: diagonal move, which includes two ways: i++&&j-- and i--&&j++
|
|
// ^way = 0 ^way = 1
|
|
// and for the diagonal move, the are six scenarios where the next step hits the
|
|
// boundary.
|
|
// a: nexti < n, nextj < 0 where i is valid. Results in i++
|
|
// b: nexti < 0, nextj < n where j is valid. Results in j++
|
|
// c: nexti >=n, nextj < 0 where none is valid. Results in j++
|
|
// d: nexti <0, nextj >= n where none is valid. Results in i++
|
|
// e: nexti >=n, nextj >=0 where j is valid. Results in j++
|
|
// f: nexti >=0, nextj >=n where i is valid. Results in i++
|
|
//
|
|
// 2: horizontal and vertical move, which includes two ways as well: i++ and j++
|
|
// The movement stops when i == j and j == n
|
|
void fill(int matrix[][MAX], int n);
|
|
|
|
int main(void) {
|
|
int n;
|
|
scanf("%d", &n);
|
|
|
|
int matrix[n][MAX];
|
|
fill(matrix, n);
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
for (int j = 0; j < n - 1; j++) {
|
|
printf("%d ", matrix[i][j]);
|
|
}
|
|
printf("%d\n", matrix[i][n - 1]);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void fill(int matrix[][MAX], int n) {
|
|
int i = 0, j = 0;
|
|
int nexti, nextj;
|
|
int way = 1;
|
|
int count = 1;
|
|
while (count <= n * n) {
|
|
matrix[i][j] = count++;
|
|
if (way == 1) {
|
|
nexti = i + 1;
|
|
nextj = j - 1;
|
|
} else {
|
|
nexti = i - 1;
|
|
nextj = j + 1;
|
|
}
|
|
// Validate if the next step is in the matrix.
|
|
// First: the next step is within matrix.
|
|
if (nexti >= 0 && nexti < n && nextj >= 0 && nextj < n) {
|
|
i = nexti;
|
|
j = nextj;
|
|
} else {
|
|
// Second: the next step is out of boundary.
|
|
if (nextj < 0 && nexti < n) {
|
|
i++;
|
|
} else if (nexti < 0 && nextj < n) {
|
|
j++;
|
|
} else if (nexti >= n && nextj < 0) {
|
|
j++;
|
|
} else if (nexti < 0 && nextj >= n) {
|
|
i++;
|
|
} else if (nexti >= n && nextj >= 0) {
|
|
j++;
|
|
} else if (nexti >= 0 && nextj >= n) {
|
|
i++;
|
|
}
|
|
way *= -1;
|
|
}
|
|
}
|
|
}
|