Mon Jun 26 04:32:02 PM CST 2023
This commit is contained in:
commit
04add754b3
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
|
@ -0,0 +1 @@
|
||||||
|
virtualenv/
|
53
demo.py
Normal file
53
demo.py
Normal file
|
@ -0,0 +1,53 @@
|
||||||
|
from ultralytics import YOLO
|
||||||
|
# from ultralytics.yolo.utils.benchmarks import benchmark
|
||||||
|
import cv2
|
||||||
|
|
||||||
|
# Load a model
|
||||||
|
# model = YOLO("yolov8n.yaml") # build a new model from scratch
|
||||||
|
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
|
||||||
|
|
||||||
|
# Use the model
|
||||||
|
# model.train(data="coco128.yaml", epochs=3,workers=0) # train the model,workers=0 if windows
|
||||||
|
# metrics = model.val() # evaluate model performance on the validation set
|
||||||
|
'''
|
||||||
|
results = model("bus.jpg") # predict on an image
|
||||||
|
print(results)
|
||||||
|
# '''
|
||||||
|
img_path = "./image/"
|
||||||
|
# results = model.predict(img_path, save=True,conf=0.5) # device=0 by default, conf:置信度阈值
|
||||||
|
# results = model.predict(img_path,save=True,classes=[0,2],conf=0.5) # i.e. classes=0,classes=[0,3,4]
|
||||||
|
|
||||||
|
# save detection results *
|
||||||
|
# results = model.predict(img_path,save=True,save_txt=True,classes=0,conf=0.4)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# predict video
|
||||||
|
video_path = "./video/1.mp4"
|
||||||
|
cap = cv2.VideoCapture(0)
|
||||||
|
|
||||||
|
# Loop through the video frames
|
||||||
|
while cap.isOpened():
|
||||||
|
# Read a frame from the video
|
||||||
|
success, frame = cap.read()
|
||||||
|
|
||||||
|
if success:
|
||||||
|
# Run YOLOv8 inference on the frame
|
||||||
|
results = model(frame)
|
||||||
|
|
||||||
|
# Visualize the results on the frame
|
||||||
|
annotated_frame = results[0].plot()
|
||||||
|
|
||||||
|
# Display the annotated frame
|
||||||
|
cv2.imshow("YOLOv8 Inference", annotated_frame)
|
||||||
|
|
||||||
|
# Break the loop if 'q' is pressed
|
||||||
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
# Break the loop if the end of the video is reached
|
||||||
|
break
|
||||||
|
|
||||||
|
# Release the video capture object and close the display window
|
||||||
|
cap.release()
|
||||||
|
cv2.destroyAllWindows()
|
3
torch_check.py
Normal file
3
torch_check.py
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
import torch
|
||||||
|
print(torch.__version__)
|
||||||
|
print(torch.cuda.is_available())
|
Loading…
Reference in a new issue