2023-DnB-Project/demo.py
2023-06-26 16:32:02 +08:00

54 lines
1.6 KiB
Python

from ultralytics import YOLO
# from ultralytics.yolo.utils.benchmarks import benchmark
import cv2
# Load a model
# model = YOLO("yolov8n.yaml") # build a new model from scratch
model = YOLO("yolov8n.pt") # load a pretrained model (recommended for training)
# Use the model
# model.train(data="coco128.yaml", epochs=3,workers=0) # train the model,workers=0 if windows
# metrics = model.val() # evaluate model performance on the validation set
'''
results = model("bus.jpg") # predict on an image
print(results)
# '''
img_path = "./image/"
# results = model.predict(img_path, save=True,conf=0.5) # device=0 by default, conf:置信度阈值
# results = model.predict(img_path,save=True,classes=[0,2],conf=0.5) # i.e. classes=0,classes=[0,3,4]
# save detection results *
# results = model.predict(img_path,save=True,save_txt=True,classes=0,conf=0.4)
# predict video
video_path = "./video/1.mp4"
cap = cv2.VideoCapture(0)
# Loop through the video frames
while cap.isOpened():
# Read a frame from the video
success, frame = cap.read()
if success:
# Run YOLOv8 inference on the frame
results = model(frame)
# Visualize the results on the frame
annotated_frame = results[0].plot()
# Display the annotated frame
cv2.imshow("YOLOv8 Inference", annotated_frame)
# Break the loop if 'q' is pressed
if cv2.waitKey(1) & 0xFF == ord("q"):
break
else:
# Break the loop if the end of the video is reached
break
# Release the video capture object and close the display window
cap.release()
cv2.destroyAllWindows()